Arid Land Geography ›› 2023, Vol. 46 ›› Issue (6): 968-981.doi: 10.12118/j.issn.1000-6060.2022.358
• Land Use and Agricultural Development • Previous Articles Next Articles
MU Jiawei(),QIAO Baorong,YU Guoxin()
Received:
2022-07-16
Revised:
2022-08-18
Online:
2023-06-25
Published:
2023-07-24
MU Jiawei, QIAO Baorong, YU Guoxin. Spatial and temporal patterns of agricultural low-carbon productivity and its influence effects in the counties of Tarim River Basin, Xinjiang[J].Arid Land Geography, 2023, 46(6): 968-981.
Tab. 1
Indicator system and descriptive statistics of agricultural low-carbon productivity in Tarim River Basin"
维度 | 类别 | 变量说明 | 单位 | 平均值 | 标准差 |
---|---|---|---|---|---|
要素投入 | 土地投入 | 农作物播种面积 | 103 hm2 | 48.64 | 40.47 |
劳动投入 | 农业从业人员 | 人 | 43204.09 | 44175.80 | |
资本投入 | 有效灌溉面积 | 103 hm2 | 42.68 | 180.91 | |
化肥折纯施用量 | t | 16705.99 | 15888.50 | ||
农用机械总动力 | kW | 172630.30 | 156521.60 | ||
农药施用量 | t | 125.44 | 220.05 | ||
农用塑料薄膜施用量 | t | 1984.04 | 2558.92 | ||
期望产出 | 效益产出 | 以2000年不变价调整的农业总产值 | 104元 | 135718.70 | 139873.00 |
环境产出 | 农业碳排放量 | 农药、化肥、农膜、灌溉和翻耕的碳排放量 | t | 41943.27 | 37601.60 |
农业面源污染 | 熵值处理后的化肥氮磷流失量 | t | 462.09 | 402.77 |
Tab. 2
Agricultural low-carbon productivity detection variables"
变量维度 | 探测变量 | 指标 | 单位 | 变量分类 |
---|---|---|---|---|
农户福利 | 农民收入水平(X1) | 农民人均纯收入 | 元 | 自然断点法 |
经济发展水平(X2) | 地区人均GDP | 元 | 自然断点法 | |
人均生产规模(X3) | 农作物播种面积/乡村从业人员 | hm2·人-1 | 等间距分类 | |
社会经济 | 机械化使用强度(X4) | 农业机械总动力/农作物播种面积 | kW·(103hm2)-1 | 等间距分类 |
工业化水平(X5) | 工业增加值/地区生产总值 | % | 自然断点法 | |
人口城镇化水平(X6) | 城镇人口/常住人口 | % | <10%;10%~30%;30%~50%;50%~70%;>70% | |
政府行为 | 财政支农力度(X7) | 农林水事务支出/地方财政一般预算支出 | % | 自然断点法 |
Tab. 4
Efficiency values and decomposition items for 42 counties and cities in Tarim River Basin from 2000 to 2020"
地区 | LCP | PEC | SEC | PTC | STC | 地区 | LCP | PEC | SEC | PTC | STC |
---|---|---|---|---|---|---|---|---|---|---|---|
库尔勒市 | 1.0740 | 1.0231 | 1.0622 | 1.0852 | 1.1163 | 乌恰县 | 1.3924 | 1.2289 | 1.0883 | 0.9745 | 1.3892 |
轮台县 | 1.1680 | 1.1227 | 1.0572 | 1.2722 | 1.0443 | 喀什市 | 1.1952 | 1.1616 | 1.0151 | 1.2058 | 1.0398 |
尉犁县 | 1.1760 | 1.2154 | 1.2095 | 1.1727 | 1.1206 | 疏附县 | 1.0829 | 1.1083 | 1.0503 | 1.2986 | 0.9593 |
若羌县 | 1.0992 | 1.0062 | 1.0295 | 1.0377 | 1.0047 | 疏勒县 | 1.1202 | 1.1051 | 1.0241 | 1.2478 | 1.0012 |
且末县 | 1.1218 | 0.9921 | 0.9956 | 1.2047 | 1.0059 | 英吉沙县 | 1.0559 | 0.9912 | 1.0040 | 1.0421 | 1.0135 |
焉耆回族自治县 | 1.1090 | 1.0173 | 1.0264 | 1.2066 | 1.0408 | 泽普县 | 1.0322 | 1.1105 | 1.0848 | 1.1932 | 0.9979 |
和静县 | 1.1264 | 1.0807 | 1.0079 | 1.2434 | 0.9659 | 莎车县 | 1.3514 | 1.1377 | 1.3610 | 1.2387 | 0.9543 |
和硕县 | 1.0696 | 1.1488 | 1.1138 | 1.2008 | 1.0470 | 叶城县 | 1.2152 | 1.0957 | 1.2071 | 1.2327 | 0.9868 |
博湖县 | 1.1111 | 1.0465 | 1.0065 | 1.1454 | 1.0097 | 麦盖提县 | 1.2668 | 1.1818 | 1.0665 | 1.1993 | 1.0334 |
阿克苏市 | 1.1177 | 1.1241 | 1.3160 | 1.1729 | 1.1447 | 岳普湖县 | 1.0520 | 1.0366 | 1.0120 | 1.1027 | 1.0067 |
温宿县 | 1.1524 | 1.1635 | 1.1111 | 1.4487 | 0.9071 | 伽师县 | 1.3242 | 0.9983 | 1.2403 | 1.1834 | 1.1818 |
库车县 | 1.2105 | 1.1765 | 1.0581 | 1.2387 | 1.0044 | 巴楚县 | 1.1450 | 1.1316 | 1.1294 | 1.3043 | 1.0310 |
沙雅县 | 1.0722 | 1.1585 | 1.0143 | 1.1979 | 0.9933 | 塔什库尔干 塔吉克自治县 | 1.7783 | 1.2006 | 1.4720 | 1.0121 | 1.3735 |
新和县 | 1.0546 | 1.1306 | 1.0119 | 1.2201 | 0.9867 | 和田市 | 1.1233 | 1.0534 | 1.0473 | 1.1339 | 1.0004 |
拜城县 | 1.0917 | 1.0785 | 0.9925 | 1.1844 | 0.9786 | 和田县 | 1.1770 | 1.0902 | 1.0109 | 1.2182 | 0.9923 |
乌什县 | 1.1013 | 1.4090 | 1.1339 | 1.2308 | 1.0097 | 墨玉县 | 1.1015 | 1.0711 | 1.0612 | 1.3214 | 1.0005 |
阿瓦提县 | 1.1043 | 1.1312 | 1.0070 | 1.1920 | 1.0092 | 皮山县 | 1.2342 | 1.0771 | 1.0381 | 1.2114 | 1.0440 |
柯坪县 | 1.1762 | 1.0709 | 1.1467 | 1.1610 | 1.0676 | 洛浦县 | 1.0958 | 1.0983 | 1.0043 | 1.1380 | 0.9982 |
阿图什市 | 1.0319 | 1.0042 | 0.9994 | 1.1047 | 1.0428 | 策勒县 | 1.2077 | 1.1039 | 1.0240 | 1.1824 | 1.0481 |
阿克陶县 | 1.0449 | 0.9831 | 1.0001 | 1.0910 | 1.0273 | 于田县 | 1.4609 | 1.4957 | 0.9920 | 1.1708 | 1.0217 |
阿合奇县 | 0.9856 | 0.9518 | 0.9895 | 0.9828 | 1.1466 | 民丰县 | 1.2172 | 1.0532 | 1.1023 | 1.0313 | 1.2797 |
Tab. 5
Moran’s I values of agricultural low-carbon productivity in the counties of Tarim River Basin"
年份 | Moran’s I | 年份 | Moran’s I | 年份 | Moran’s I |
---|---|---|---|---|---|
2000 | 0.349*** | 2007 | 0.331*** | 2014 | 0.301*** |
2001 | 0.364*** | 2008 | 0.323*** | 2015 | 0.278*** |
2002 | 0.367*** | 2009 | 0.316*** | 2016 | 0.310*** |
2003 | 0.365*** | 2010 | 0.364*** | 2017 | 0.324*** |
2004 | 0.361*** | 2011 | 0.370*** | 2018 | 0.300*** |
2005 | 0.354*** | 2012 | 0.379*** | 2019 | 0.299*** |
2006 | 0.339*** | 2013 | 0.368*** | 2020 | 0.285*** |
Tab. 7
Regression results of spatial Durbin model"
变量 | 空间杜宾模型 | |||||||
---|---|---|---|---|---|---|---|---|
空间固定模型 | 时间固定模型 | 时间空间双固定模型 | ||||||
统计值 | 滞后项系数 | 统计值 | 滞后项系数 | 统计值 | 滞后项系数 | |||
ln(X1) | 0.745*** | 0.074 | 0.250* | -0.026 | 0.795*** | 1.068*** | ||
(5.532) | (0.424) | (2.458) | (-0.160) | (6.041) | (4.809) | |||
ln(X2) | 0.759*** | -1.440*** | 0.191 | -0.657** | 0.885*** | 0.270 | ||
(4.731) | (-5.327) | (1.594) | (-2.725) | (5.530) | (0.740) | |||
X3 | -0.171 | 0.317 | -0.118 | 0.148 | -0.139 | 0.187 | ||
(-1.951) | (1.903) | (-1.860) | (1.082) | (-1.738) | (1.179) | |||
X4 | 0.197*** | 0.522*** | 0.231*** | 0.517*** | 0.227*** | 0.587*** | ||
(9.290) | (11.682) | (11.493) | (10.712) | (11.556) | (13.315) | |||
X5 | -1.856*** | 5.915*** | -2.902*** | 1.949* | -1.625*** | 3.969*** | ||
(-3.659) | (5.681) | (-7.975) | (2.140) | (-3.440) | (3.780) | |||
X6 | 1.227*** | -0.152 | 0.741*** | 0.056 | 0.510 | -0.710 | ||
(4.801) | (-0.382) | (4.399) | (0.126) | (1.945) | (-1.402) | |||
ln(X7) | -0.564*** | 0.093 | -0.419*** | 0.228 | -0.459*** | 0.410* | ||
(-5.281) | (0.560) | (-6.681) | (1.923) | (-4.415) | (2.002) | |||
空间自回归系数 | 0.381*** | -0.189** | -0.271*** | |||||
(9.497) | (-3.024) | (-4.497) | ||||||
方差 | 0.633*** | 0.923*** | 0.512*** | |||||
(20.850) | (21.007) | (20.940) | ||||||
拟合优度 | 0.484 | 0.520 | 0.403 | |||||
观测数 | 882 | 882 | 882 | |||||
对数似然函数值 | -1066.823 | -1212.022 | -949.212 |
Tab. 8
Results of effect decomposition"
变量 | 直接效应 | 溢出效应 | 总效应 |
---|---|---|---|
ln(X1) | 0.812*** | 0.650*** | 1.463*** |
(6.050) | (3.944) | (8.031) | |
ln(X2) | 0.880*** | 0.042 | 0.921*** |
(5.720) | (0.160) | (3.102) | |
X3 | -0.128* | 0.179 | 0.051 |
(-1.662) | (1.475) | (0.374) | |
X4 | 0.235*** | 0.403*** | 0.639*** |
(12.203) | (10.001) | (14.504) | |
X5 | -1.553*** | 3.428*** | 1.876* |
(-3.484) | (3.939) | (1.960) | |
X6 | 0.506* | -0.678* | -0.172 |
(1.955) | (-1.794) | (-0.360) | |
ln(X7) | -0.453*** | 0.419*** | -0.034 |
(-4.191) | (2.593) | (-0.182) |
Tab. 9
Decomposition of effects of agricultural low-carbon productivity impact variables in counties of Tarim River Basin based on geographical distance weight matrix"
变量 | 直接效应 | 间接效应 | 总效应 |
---|---|---|---|
ln(X1) | 1.073*** | 0.051 | 1.124** |
(7.096) | (0.127) | (2.820) | |
ln(X2) | 0.914*** | -0.152 | 0.762 |
(5.426) | (-0.368) | (1.791) | |
X3 | -0.228** | -0.071 | -0.299 |
(-2.691) | (-0.320) | (-1.334) | |
X4 | 0.205*** | 0.095 | 0.301** |
(9.709) | (1.015) | (3.245) | |
X5 | -1.532** | -0.622 | -2.153 |
(-3.053) | (-0.403) | (-1.390) | |
X6 | 1.091*** | 0.904 | 1.995** |
(3.870) | (1.246) | (2.801) | |
ln(X7) | -0.321** | 0.472 | 0.151 |
(-2.684) | (1.774) | (0.536) |
Tab. 10
Intensity and ranking of the role of detection variables from 2000 to 2020"
变量 | 2000年 | 排名 | 变量 | 2010年 | 排名 | 变量 | 2015年 | 排名 | 变量 | 2020年 | 排名 |
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.158 | 1 | X1 | 0.389 | 1 | X1 | 0.060 | 7 | X1 | 0.130 | 6 |
X2 | 0.130 | 2 | X2 | 0.097 | 7 | X2 | 0.457 | 1 | X2 | 0.187 | 2 |
X3 | 0.103 | 4 | X3 | 0.245 | 3 | X3 | 0.315 | 3 | X3 | 0.049 | 7 |
X4 | 0.047 | 7 | X4 | 0.287 | 2 | X4 | 0.408 | 2 | X4 | 0.172 | 4 |
X5 | 0.062 | 6 | X5 | 0.129 | 5 | X5 | 0.064 | 6 | X5 | 0.146 | 5 |
X6 | 0.115 | 3 | X6 | 0.104 | 6 | X6 | 0.070 | 5 | X6 | 0.187 | 3 |
X7 | 0.073 | 5 | X7 | 0.168 | 4 | X7 | 0.307 | 4 | X7 | 0.376 | 1 |
Tab. 11
Interaction of detection variables in Tarim River Basin"
交互变量 | 2000年 | 交互变量 | 2010年 | 交互变量 | 2015年 | 交互变量 | 2020年 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
q | 类型 | q | 类型 | q | 类型 | q | 类型 | ||||
X1∩X2 | 0.428 | NE | X1∩X2 | 0.587 | NE | X1∩X2 | 0.636 | DE | X1∩X2 | 0.333 | DE |
X1∩X3 | 0.240 | DE | X1∩X3 | 0.580 | NE | X1∩X3 | 0.542 | DE | X1∩X3 | 0.325 | NE |
X1∩X4 | 0.332 | NE | X1∩X4 | 0.681 | DE | X1∩X4 | 0.895 | NE | X1∩X4 | 0.394 | NE |
X1∩X7 | 0.450 | NE | X1∩X7 | 0.713 | NE | X1∩X7 | 0.689 | DE | X1∩X7 | 0.691 | NE |
X2∩X3 | 0.187 | DE | X2∩X3 | 0.597 | DE | X2∩X3 | 0.448 | NE | X2∩X3 | 0.384 | NE |
X2∩X4 | 0.227 | NE | X2∩X4 | 0.635 | NE | X2∩X4 | 0.723 | DE | X2∩X4 | 0.464 | NE |
X2∩X7 | 0.552 | NE | X2∩X7 | 0.465 | NE | X2∩X7 | 0.469 | DE | X2∩X7 | 0.543 | DE |
X3∩X4 | 0.187 | DE | X3∩X4 | 0.707 | NE | X3∩X4 | 0.475 | DE | X3∩X4 | 0.304 | NE |
X3∩X7 | 0.209 | DE | X3∩X7 | 0.574 | NE | X3∩X7 | 0.501 | NE | X3∩X7 | 0.616 | NE |
X4∩X7 | 0.369 | NE | X4∩X7 | 0.442 | DE | X4∩X7 | 0.619 | DE | X4∩X7 | 0.573 | DE |
[1] | 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(3): 596-608. |
[Xia Siyou, Zhao Yuan, Xu Xin, et al. Regional inequality, spatial-temporal pattern and dynamic evolution of carbon emission intensity from agriculture in China in the period of 1997-2016[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 596-608.] | |
[2] |
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价--基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410.
doi: 10.31497/zrzyxb.20210210 |
[Tian Chengshi, Chen Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.]
doi: 10.31497/zrzyxb.20210210 |
|
[3] | 樊胜根. 中国农业生产与生产率的增长新的测算方法及结论[J]. 农业技术经济, 1998(4): 27-35. |
[Fan Shenggen. A new method and conclusion for measuring the growth of agricultural production and productivity in China[J]. Agricultural Technology and Economics, 1998(4): 27-35.] | |
[4] | 新疆维吾尔自治区统计局. 新疆统计年鉴[M]. 北京: 中国统计出版社, 2019: 12-18. |
[Xinjiang Uygur Autonomous Region Bureau of Statistics. Xinjiang statistical yearbook[M]. Beijing: China Statistics Press, 2019: 12-18.] | |
[5] | 鲍超, 徐牧天. 西北地区投入产出效率的综合测度与时空变化[J]. 干旱区地理, 2021, 44(6): 1772-1783. |
[Bao Chao, Xu Mutian. Comprehensive measurement and spatiotemporal variations of input-output efficiency in northwest China[J]. Arid Land Geography, 2021, 44(6): 1772-1783.] | |
[6] | 田云, 林子娟. 中国省域农业碳排放效率与经济增长的耦合协调[J]. 中国人口·资源与环境, 2022, 32(4): 13-22. |
[Tian Yun, Lin Zijuan. Coupling coordination between agricultural carbon emission efficiency and economic growth at provincial level in China[J]. China Population, Resources and Environment, 2022, 32(4): 13-22.] | |
[7] | 王钰凯, 郭辉. 新疆旅游业生态效率时空分异与收敛性研究[J]. 干旱区地理, 2022, 45(4): 1320-1331. |
[Wang Yukai, Guo Hui. Spatial and temporal differentiation and convergence studies of the eco-efficiency of Xinjiang tourism industry[J]. Arid Land Geography, 2022, 45(4): 1320-1331.] | |
[8] | 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273. |
[Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the CSAE, 2008, 24(10): 269-273.] | |
[9] | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21-27. |
[Min Jisheng, Hu Hao. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21-27.] | |
[10] | 李远玲, 王金龙, 杨伶. 基于县域尺度的湖南省农业碳排放时空特征分析[J]. 中国农业资源与区划, 2022, 43(4): 75-84. |
[Li Yuanling, Wang Jinlong, Yang Ling. Study on temporal and apatlal characteristics of agricultural carbon emissions in Hunan Province at county scale[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(4): 75-84.] | |
[11] |
程琳琳, 张俊飚, 田云, 等. 中国省域农业碳生产率的空间分异特征及依赖效应[J]. 资源科学, 2016, 38(2): 276-289.
doi: 10.18402/resci.2016.02.10 |
[Cheng Linlin, Zhang Junbiao, Tian Yun, et al. Spatially divergent characteristics and dependence effects of agricultural carbon productivity in Chinese provinces[J]. Resource Science, 2016, 38(2): 276-289.]
doi: 10.18402/resci.2016.02.10 |
|
[12] | 黄景裕, 尧波, 胡启武, 等. 鄱阳湖生态经济区农作物生产碳效率的时空变化[J]. 中国生态农业学报, 2014, 22(10): 1231-1239. |
[Huang Jingyu, Yao Bo, Hu Qiwu, et al. Spatio-temporal variations in carbon efficiency of crops in Poyang Lake eco-economic region[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1231-1239.] | |
[13] |
Smith P, Smith J U, Andren O, et al. Carbon sequestration potential in European croplands has been overestimated[J]. Global Change Biology, 2010, 11(12): 2153-2163.
doi: 10.1111/gcb.2005.11.issue-12 |
[14] |
Ajzen I, Fishbein M. The prediction of behavior from attitudinal and normative variables[J]. Journal of Experimental Social Psychology, 1970, 6(4): 466-487.
doi: 10.1016/0022-1031(70)90057-0 |
[15] |
Johnson M F, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1): 107-124.
pmid: 17706849 |
[16] | 田云, 张俊飚. 中国农业碳排放、低碳农业生产率及其协调性研究[J]. 中国农业大学学报, 2017, 22(5): 208-218. |
[Tian Yun, Zhang Junbiao. Agricultural carbon emissions, low carbon agricultural productivity and their coordination relation in China[J]. Journal of China Agricultural University, 2017, 22(5): 208-218.] | |
[17] | 钱丽, 肖仁桥, 陈忠卫. 碳排放约束下中国省际农业生产效率及其影响因素研究[J]. 经济理论与经济管理, 2013(9): 100-112. |
[Qian Li, Xiao Renqiao, Chen Zhongwei. Research on China’s provincial agricultural production efficiency and its influencing factors under the constraint of carbon dioxide emission[J]. Economic Theory and Economic Management, 2013(9): 100-112.] | |
[18] | 许波, 卢召艳, 杨胜苏, 等. 湖南省农业生产效率演变与影响因素[J]. 经济地理, 2022, 42(3): 141-149. |
[Xu Bo, Lu Zhaoyan, Yang Shengsu, et al. Spatio-temporal evolution pattern and influencing factors of agricultural production efficiency in Hunan Province[J]. Economic Geography, 2022, 42(3): 141-149.] | |
[19] | 刘海英, 杨明, 王殿武. 绿色技术创新促进碳生产率提高的作用机制--基于工业结构升级、循环农业发展和交通运输替代的中介效应分析[J]. 科技管理研究, 2022, 42(10): 194-201. |
[Liu Haiying, Yang Ming, Wang Dianwu. Impact mechanism of green technology innovation on carbon productivity promotion: Based on the mediating effect analysis of industrial structure upgrading, circular agriculture development and transportation substitution[J]. Science and Technology Management Research, 2022, 42(10): 194-201.] | |
[20] | 程琳琳, 张俊飚, 何可. 多尺度城镇化对农业碳生产率的影响及其区域分异特征研究--基于SFA、E指数与SDM的实证[J]. 中南大学学报(社会科学版), 2018, 24(5): 107-116. |
[Cheng Linlin, Zhang Junbiao, He Ke. Study on the impact of multi-dimensional urbanization on agricultural carbon productivity and its regional differentiation: An empirical study based on SFA, entropy index and SDM[J]. Journal of Central South University (Social Sciences Edition), 2018, 24(5): 107-116.] | |
[21] | 张哲晰, 穆月英. 产业集聚能提高农业碳生产率吗?[J]. 中国人口·资源与环境, 2019, 29(7): 57-65. |
[Zhang Zhexi, Mu Yueying. Can industrial agglomeration improve agricultural carbon productivity?[J]. China Population, Resources and Environment, 2019, 29(7): 57-65.] | |
[22] | 宋博, 穆月英, 侯玲玲. 农户专业化对农业低碳化的影响研究--来自北京市蔬菜种植户的证据[J]. 自然资源学报, 2016, 31(3): 468-476. |
[Song Bo, Mu Yueying, Hou Lingling. Study on the effect of farm households’ specialization on low-carbon agriculture: Evidence from vegetable growers in Beijing, China[J]. Journal of Natural Resources, 2016, 31(3): 468-476.] | |
[23] | 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. |
[Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86.] | |
[24] | 崔叶辰, 韩亚丽, 吕宁, 等. 基于超效率SBM模型的农业生态效率测度[J]. 统计与决策, 2020, 36(21): 87-90. |
[Cui Yechen, Han Yali, Lü Ning, et al. Agro-ecological efficiency measurement based on super-efficient SBM model[J]. Statistics and Decision Making, 2020, 36(21): 87-90.] | |
[25] |
汪亚琴, 姚顺波, 侯孟阳, 等. 基于地理探测器的中国农业生态效率时空分异及其影响因素[J]. 应用生态学报, 2021, 32(11): 4039-4049.
doi: 10.13287/j.1001-9332.202111.026 |
[Wang Yaqin, Yao Shunbo, Hou Mengyang, et al. Spatial-temporal differentiation and its influencing factors of agricultural eco-efficiency in China based on geographic detector[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4039-4049.]
doi: 10.13287/j.1001-9332.202111.026 |
|
[26] |
尹旭, 王婧, 李裕瑞, 等. 中国乡镇人口分布时空变化及其影响因素[J]. 地理研究, 2022, 41(5): 1245-1261.
doi: 10.11821/dlyj020210479 |
[Yin Xu, Wang Jing, Li Yurui, et al. Spatio-temporal evolution and driving factors of Chinese population at town level[J]. Geographical Research, 2022, 41(5): 1245-1261.]
doi: 10.11821/dlyj020210479 |
|
[27] |
Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509.
doi: 10.1016/S0377-2217(99)00407-5 |
[28] |
Zhang Y, Geng W L, Zhang P Y, et al. Dynamic changes, spatiotemporal differences and factors influencing the urban eco-efficiency in the lower reaches of the Yellow River[J]. International Journal of Environmental Research and Public Health, 2020, 20(17): 7510, doi: 10.3390/ijerph17207510.
doi: 10.3390/ijerph17207510 |
[1] | ZHANG Qifei, CHEN Yaning, SUN Congjian, XIANG Yanyun, HAO Haichao. Changes in terrestrial water storage and evaluation of oasis ecological security in the Tarim River Basin [J]. Arid Land Geography, 2024, 47(1): 1-14. |
[2] | LU Zidao, SONG Wanyi, WANG Yue, PAN Haize, MENG Xiaolin, YAN Yuqiang. Spatiotemporal pattern and spatial spillover effect of cultural industry clusters in the Yellow River Basin [J]. Arid Land Geography, 2023, 46(11): 1927-1937. |
[3] | ZHANG Jiudan, LI Junli, BAO Anming, BAI Jie, LIU Tie, HUANG Yue. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020 [J]. Arid Land Geography, 2022, 45(6): 1824-1835. |
[4] | LIU Xia,ZHANG Man,XU Jianhua,GUO Ying,DUAN Weili,SHEN Yanjun. Water resources carrying capacity of Tarim River Basin based on system dynamics model [J]. Arid Land Geography, 2021, 44(5): 1407-1416. |
[5] |
SUN Tian-yao, LI Xue-mei, XU Min, ZHANG Meng-sheng.
Spatialtemporal variations of vegetation coverage in the Tarim River Basin from 2000 to 2018 [J]. Arid Land Geography, 2020, 43(2): 415-424. |
[6] | JIAO Wei, LIU Xin-ping, ZHANG Lin, LIANG Ling-xia. Ecological response to the land development in Tarim River Basin [J]. 干旱区地理, 2018, 41(6): 1396-1404. |
[7] | WANG Guang-yan, WANG Yuan-jian, GUI Dong-wei. A review on water resources research in Tarim River Basin [J]. 干旱区地理, 2018, 41(6): 1151-1159. |
[8] | CHEN Ya-ning, LI Wei-hong, CHEN Ya-peng, ZHU Cheng-gang. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin [J]. 干旱区地理, 2018, 41(5): 901-907. |
[9] | WEI Guang-hui, GUI Dong-wei, ZHAO Xin-feng. Irrigation area carrying capacity in Tarim River Basin in different years [J]. 干旱区地理, 2018, 41(2): 230-237. |
[10] | HAN Qiang, XUE Lian-qing, LIU Yuan-hong, REN Lei. Hydrological responses to land use change in upper-middle reaches of the Tarim River Basin [J]. , 2017, 40(6): 1165-1170. |
[11] | DENG Ming-jiang, FAN Zi-li, XU Hai-liang, ZHOU Hai-ying. Ecological function regionalization of Tarim River Basin [J]. , 2017, 40(4): 705-717. |
[12] | ZHANG Peng-fei, Guli JIAPAER, BAO An-ming, MENG Fan-hao, GUO Hui, GUO Hao, LUO Min, HUANG Xiao-ran. Ecological effects evaluation for short term planning of the Tarim River [J]. , 2017, 40(1): 156-164. |
[13] | DENG Ming-jiang. Prospecting development of south Xinjiang: water strategy and problem of Tarim River Basin [J]. , 2016, 39(1): 1-11. |
[14] | ZHAO Jun, LIU Xin-ping, LIU Xiang-hui, TIAN Tong. Analysis on Coupling Coordination Degree Between Agriculture and Animal Husbandry Systems in Tarim River Basin [J]. , 2015, 38(5): 1077-1084. |
[15] | SHEN Bin, LI Xin-gong. Accuracy assessment of TRMM3B43 data in Tarim River Basin [J]. , 2015, 38(4): 703-712. |
|