Arid Land Geography ›› 2024, Vol. 47 ›› Issue (12): 2104-2114.doi: 10.12118/j.issn.1000-6060.2024.234
• Climate Change • Previous Articles Next Articles
ZHOU Xiaoming(), ZHANG Zhe(), ZHANG Yue, WANG Yuning
Received:
2024-04-16
Revised:
2024-05-15
Online:
2024-12-25
Published:
2025-01-02
Contact:
ZHANG Zhe
E-mail:13981435165@163.com;zhangzhe_0110@yeah.net
ZHOU Xiaoming, ZHANG Zhe, ZHANG Yue, WANG Yuning. TVDI-based analysis of drought and influencing factors in Turpan City in the last 20 years[J].Arid Land Geography, 2024, 47(12): 2104-2114.
Tab. 1
Fitting equations and correlation coefficients of dry and wet edges in Turpan City annual average Ts-NDVI feature space from 2001 to 2022"
年份 | 拟合干边公式 | R2 | 拟合湿边公式 | R2 | |
---|---|---|---|---|---|
2001 | Ts=51.1-41.1NDVI | 0.85 | Ts=3.97+74.6NDVI | 0.75 | |
2002 | Ts=52.6-41.6NDVI | 0.87 | Ts=5.37+61.6NDVI | 0.73 | |
2003 | Ts=54.4-43.3NDVI | 0.86 | Ts=3.11+75.0NDVI | 0.77 | |
2004 | Ts=53.9-41.5NDVI | 0.83 | Ts=6.00+64.6NDVI | 0.75 | |
2005 | Ts=53.2-38.5NDVI | 0.89 | Ts=3.05+65.5NDVI | 0.78 | |
2006 | Ts=51.1-36.6NDVI | 0.81 | Ts=5.32+62.6NDVI | 0.75 | |
2007 | Ts=51.1-36.7NDVI | 0.86 | Ts=4.48+56.9NDVI | 0.68 | |
2008 | Ts=52.5-38.1NDVI | 0.75 | Ts=4.72+59.4NDVI | 0.71 | |
2009 | Ts=52.1-37.4NDVI | 0.87 | Ts=4.90+56.8NDVI | 0.67 | |
2010 | Ts=50.5-38.3NDVI | 0.85 | Ts=3.48+68.3NDVI | 0.78 | |
2011 | Ts=51.8-37.4NDVI | 0.84 | Ts=3.68+69.7NDVI | 0.75 | |
2012 | Ts=52.2-34.8NDVI | 0.83 | Ts=4.15+66.9NDVI | 0.79 | |
2013 | Ts=53.0-37.0NDVI | 0.86 | Ts=3.95+54.6NDVI | 0.69 | |
2014 | Ts=52.2-39.2NDVI | 0.85 | Ts=4.62+54.7NDVI | 0.57 | |
2015 | Ts=52.3-35.1NDVI | 0.88 | Ts=2.06+65.8NDVI | 0.74 | |
2016 | Ts=53.0-35.0NDVI | 0.85 | Ts=4.79+57.7NDVI | 0.73 | |
2017 | Ts=52.7-33.5NDVI | 0.86 | Ts=3.76+63.9NDVI | 0.77 | |
2018 | Ts=52.6-38.4NDVI | 0.89 | Ts=3.50+62.8NDVI | 0.74 | |
2019 | Ts=51.7-35.5NDVI | 0.78 | Ts=4.56+56.5NDVI | 0.71 | |
2020 | Ts=53.4-36.9NDVI | 0.90 | Ts=2.44+63.0NDVI | 0.72 | |
2021 | Ts=54.0-36.5NDVI | 0.81 | Ts=4.06+58.7NDVI | 0.76 | |
2022 | Ts=54.2-37.6NDVI | 0.88 | Ts=5.41+59.0NDVI | 0.71 |
Tab. 2
Geo-detector single-factor and multi-factor interactive detection results"
影响因子 | 气温 | 降雨量 | 蒸散发 | 坡度 | 高程 | 土地覆被类型 | 人口密度 |
---|---|---|---|---|---|---|---|
气温 | 0.880* | 0.904 | 0.912 | 0.895 | 0.892 | 0.889 | 0.884 |
降雨量 | - | 0.789* | 0.914 | 0.833 | 0.890 | 0.844 | 0.802 |
蒸散发 | - | - | 0.906* | 0.909 | 0.911 | 0.911 | 0.908 |
坡度 | - | - | - | 0.504* | 0.882 | 0.684 | 0.514 |
高程 | - | - | - | - | 0.870* | 0.884 | 0.875 |
土地利用类型 | - | - | - | - | - | 0.486* | 0.548 |
人口密度 | - | - | - | - | - | - | 0.007* |
[1] |
黄曼捷, 李艳忠, 王渊刚, 等. 多源遥感降水产品在西北干旱区的气象干旱性能评估[J]. 干旱区地理, 2024, 47(4): 549-560.
doi: 10.12118/j.issn.1000-6060.2023.146 |
[Huang Manjie, Li Yanzhong, Wang Yuangang, et al. Evaluation of meteorological drought performance of multi-source remote-sensing precipitation products in arid northwest China[J]. Arid Land Geography, 2024, 47(4): 549-560.]
doi: 10.12118/j.issn.1000-6060.2023.146 |
|
[2] |
许昕彤, 朱丽, 吕潇雨, 等. MSWEP降水产品在黄河流域气象干旱监测中的适用性评价[J]. 干旱区地理, 2023, 46(3): 371-384.
doi: 10.12118/j.issn.1000-6060.2022.299 |
[Xü Xintong, Zhu Li, Lü Xiaoyu, et al. Applicability evaluation of MSWEP product for meteorological drought monitoring in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(3): 371-384.]
doi: 10.12118/j.issn.1000-6060.2022.299 |
|
[3] | Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. Proceedings of the Third ERTS Symposium, 1973, 3(8): 309-317. |
[4] | Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224. |
[5] | 陈少丹, 张利平, 汤柔馨, 等. 基于SPEI和TVDI的河南省干旱时空变化分析[J]. 农业工程学报, 2017, 33(24): 126-132. |
[Chen Shaodan, Zhang Liping, Tang Rouxin, et al. Analysis on temporal and spatial variation of drought in Henan Province based on SPEI and TVDI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 126-132.] | |
[6] |
王凤杰, 冯文兰, 扎西央宗, 等. 基于FY-3A/VIRR和TERRA/MODIS数据藏北干旱监测对比[J]. 自然资源学报, 2017, 32(7): 1229-1239.
doi: 10.11849/zrzyxb.20160745 |
[Wang Fengjie, Feng Wenlan, Zhaxi Yangzong, et al. The comparison of FY-3A/VIRR and TERRA/MODIS data for drought monitoring[J]. Journal of Natural Resources, 2017, 32(7): 1229-1239.]
doi: 10.11849/zrzyxb.20160745 |
|
[7] | 杨银科, 盛强, 邵鹏鲲, 等. 基于树轮密度资料的黄河干流中部地区的PDSI序列重建[J]. 水电能源科学, 2022, 40(8): 1-4, 31. |
[Yang Yinke, Sheng Qiang, Shao Pengkun, et al. Reconstruction of PDSI sequence in central part of Yellow River based on tree rings density data[J]. Water Resources and Power, 2022, 40(8): 1-4, 31.] | |
[8] | Wang H, Zhang Y, Shao X. A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China[J]. Climatic Change, 2021, 165(1-2): 39, doi: 10.1007/s10584-021-03021-3. |
[9] | Li Y Z, Zhuang J C, Bai P, et al. Evaluation of three long-term remotely sensed precipitation estimates for meteorological drought monitoring over China[J]. Remote Sensing, 2022, 15(1): 86-86. |
[10] | Wang J F, Liu Z Y, Yuan Z Y, Yuan H X, et al. Impacts of reservoir operations on multi-scale correlations between hydrological drought and meteorological drought[J]. Journal of Hydrology, 2018, 563: 726-736. |
[11] |
陈世亮, 李霞, 钱钊晖, 等. 澜沧江——湄公河流域干旱趋势及其对生态系统碳固定的影响[J]. 地理学报, 2024, 79(3): 747-764.
doi: 10.11821/dlxb202403012 |
[Chen Shiliang, Li Xia, Qian Zhaohui, et al. Drought trend and its impact on ecosystem carbon sequestration in Lancang-Mekong River Basin[J]. Acta Geographic Sinica, 2024, 79(3): 747-764.] | |
[12] | 武彬. 基于VIIRS-TVDI的干旱区农田土壤湿度反演方法研究[D]. 泰安: 山东农业大学, 2024. |
[Wu Bin. Study on inversion of soil moisture in arid area based on VIIRS-TVDI[D]. Tai’an: Shandong Agricultural University, 2024.] | |
[13] | 于维, 柯福阳, 曹云昌. 基于MODIS-TVDI/GNSS-PWV的云南省干旱特征时空分析[J]. 自然资源遥感, 2021, 33(3): 202-210. |
[Yu Wei, Ke Fuyang, Cao Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS-TVDI/GNSS-PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.] | |
[14] |
余灏哲, 李丽娟, 李九一. 基于TRMM降尺度和MODIS数据的综合干旱监测模型构建[J]. 自然资源学报, 2020, 35(10): 2553-2568.
doi: 10.31497/zrzyxb.20201019 |
[Yu Haozhe, Li Lijuan, Li Jiuyi. Establishment of comprehensive drought monitoring model based on downscaling TRMM and MODIS data[J]. Journal of Natural Resources, 2020, 35(10): 2553-2568.]
doi: 10.31497/zrzyxb.20201019 |
|
[15] | Liu Q, Zhang S, Zhang H R, et al. Monitoring drought using composite drought indices based on remote sensing[J]. Science of the Total Environment, 2020, 711: 134585, doi: 10.1016/j.scitotenv.2019.134585. |
[16] | Zhang Z, Xu W, Shi Z, et al. Establishment of a comprehensive drought monitoring index based on multisource remote sensing data and agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2113-2126. |
[17] | 阿依加马力·克然木, 努尔巴衣·阿布都沙力克. 近52年新疆吐鲁番市气温及降水量变化特征分析[J]. 干旱区资源与环境, 2014, 28(12): 45-50. |
[Keranmu Ayijiamali, Abudouzhalake Nuerbayi. Analysis of temperature and rainfall changes in recent 52 years in Turpan City, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 45-50.] | |
[18] | 匡昭敏. 基于EOS/MODIS卫星数据的甘蔗干旱遥感监测模型及其应用研究[D]. 南京: 南京信息工程大学, 2007. |
[Kuang Zhaomin. Sugarcane drought monitoring models and its application with remotely sensed data from EOS/MODIS[D]. Nanjing: Nanjing University of Information Science & Technology, 2007.] | |
[19] | 刘悦. 近20年我国西部地区植被恢复时空动态及驱动力分析[D]. 咸阳: 西北农林科技大学, 2023. |
[Liu Yue. Spatio-temporal dynamics and driving forces of vegetation restoration in western China in recent 20 years[D]. Xianyang: Northwest A & F University, 2023.] | |
[20] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021 |
[21] |
李洛晞, 沈润平, 李鑫慧, 等. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.
doi: 10.11873/j.issn.1004-0323.2016.6.1083 |
[Li Luoxi, Shen Runping, Li Xinhui, et al. Comparison of forest disturbance indices based on MODIS time-series data[J]. Remote Sensing Technology and Application, 2016, 31(6): 1083-1090.] | |
[22] | 夏照华. 基于NDVI时间序列的植被动态变化研究[D]. 北京: 北京林业大学, 2007. |
[Xia Zhaohua. The studies on dynamic of vegetation based on NDVI time series[D]. Beijing: Beijing Forestry University, 2007.] | |
[23] | 杨曦, 武建军, 闫峰, 等. 基于地表温度-植被指数特征空间的区域土壤干湿状况[J]. 生态学报, 2009, 29(3): 1205-1216. |
[Yang Xi, Wu Jianjun, Yan Feng, et al. Assessment of regional soil moisture status based on characteristics of surface temperature/vegetation index space[J]. Acta Ecologica Sinica, 2009, 29(3): 1205-1216.] | |
[24] | 程小强, 周兆叶, 李旺平, 等. 基于MODIS数据的中亚地区旱情监测及影响因素分析[J]. 农业工程学报, 2022, 38(10): 128-137. |
[Cheng Xiaoqiang, Zhou Zhaoye, Li Wangping, et al. Monitoring drought situation and analyzing influencing factors in Central Asia using MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 128-137.] | |
[25] | 苟爱萍, 张振, 王江波. 基于POI视角的上海城市功能区演化特征及驱动因素[J]. 资源开发与市场, 2022, 38(9): 1052-1062. |
[Gou Aiping, Zhang zhen, Wang Jiangbo. Evolution characteristics and driving factors Shanghai urban functional area based on POI perspective[J]. Resource Development & Market, 2022, 38(9): 1052-1062.] | |
[26] | 高晓彤, 赵林, 贾建琦. 包容性绿色发展的时空演变与驱动因素——以山东省为例[J]. 开发研究, 2021(5): 24-31. |
[Gao Xiaotong, Zhao Lin, Jia Jianqi. Spatial-temporal evolution and driving factors of inclusive green development: Taking Shandong Province as an example[J]. Development Research, 2021(5): 24-31.] | |
[27] | 张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12): 4707-4719. |
[Zhang Xueyuan, Wei Wei, Zhou Liang, et al. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of northwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4707-4719.] | |
[28] | 徐娜, 丁建丽, 刘海霞. 基于NDVI和LSMM的干旱区植被信息提取研究——以新疆吐鲁番市为例[J]. 测绘与空间地理信息, 2012, 35(7): 52-57. |
[Xu Na, Ding Jianli, Liu Haixia. Extraction of vegetation information in arid area based on NDVI and LSMM: A case study of Turpan[J]. Geomatics & Spatial Information Technology, 2012, 35(7): 52-57.] | |
[29] | 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J]. 遥感学报, 2003, 7(5): 420-427. |
[Qi Shuhua, Wang Changyao, Niu Zheng. Evaluating soil moisture status in China using the temperature vegetation dryness index (TVDI)[J]. Journal of Remote Sensing, 2003, 7(5): 420-427.] | |
[30] | 吴越. 吐鲁番盆地地表蒸散量估算与植被演化特征研究[D]. 北京: 中国地质大学(北京), 2013. |
[Wu Yue. The evapotranspiration estimation and evolution characteristics of vegetation in Turpan Basin[D]. Beijing: China University of Geosciences Beijing, 2013.] | |
[31] | 王芳, 马红, 熊友良. 吐鲁番市干旱气候特征及人工增雨工作开展[J]. 农家参谋, 2019(19): 141. |
[Wang Fang, Ma Hong, Xiong Youliang. Arid climate characteristics and artificial precipitation work in Turpan City[J]. Farm Staff, 2019(19): 141.] | |
[32] | 郭江浩, 黄佛君, 刘博, 等. 近47年吐鲁番盆地人工绿洲精明增长的时空过程分析[J]. 江西农业学报, 2024, 36(1): 76-86. |
[Guo Jianghao, Huang Fujun, Liu Bo, et al. Spatiotemporal analysis of smart growth of artificial oasis in Turpan Basin in recent 47 years[J]. Acta Agriculturae Jiangxi, 2024, 36(1): 76-86.] | |
[33] | 秦国强. 吐哈盆地地下水演变规律及趋势研究[D]. 乌鲁木齐: 新疆农业大学, 2023. |
[Qin Guoqiang. Research on evolution law and trend of groundwater in the Turpan-Hami Basin[D]. Urumqi: Xinjiang Agricultural University, 2023.] | |
[34] | 冶建明, 谢斯琦. 吐鲁番市土地利用转型及生态服务功能交叉敏感性研究[J]. 草业科学, 2024, 41(9): 2164-2180. |
[Ye Jianming, Xie Siqi. Cross-sensitivity analysis of land-use transformation and ecosystem service functions in Turpan City, China[J]. Pratacultural Science, 2024, 41(9): 2164-2180.] | |
[35] | 张新庆. 吐鲁番盆地地形与天气[J]. 新疆气象, 1998(6): 11-13. |
[Zhang Xinqing. Topography and weather in Turpan Basin[J]. Xinjiang Meteorology, 1998(6): 11-13.] | |
[36] | 曹兴, 万瑜, 胡双全, 等. 干旱条件下吐鲁番盆地相对湿润指数变化特征分析[J]. 沙漠与绿洲气象, 2013, 7(6): 42-49. |
[Cao Xing, Wan Yu, Hu Shuangquan, et al. Variation of relative moisture index in Turpan Basin under arid condition[J]. Desert and Oasis Meteorology, 2013, 7(6): 42-49.] | |
[37] | 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008. |
[Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008.] | |
[38] | Yang R, Wang H, Hu J, et al. An improved temperature vegetation dryness index (iTVDI) and its applicability to drought monitoring[J]. Journal of Mountain Science, 2017, 14(11): 2284-2294. |
[39] | Ali S, Tong D, Xu Z, et al. Characterization of drought monitoring events through MODIS- and TRMM-based DSI and TVDI over South Asia during 2001—2017[J]. Environmental Science and Pollution Research, 2019, 26: 33568-33581. |
|