Arid Land Geography ›› 2024, Vol. 47 ›› Issue (3): 369-379.doi: 10.12118/j.issn.1000-6060.2023.448
• Climatology and Hydrology • Previous Articles Next Articles
LU Dongyan1,2(), ZHU Xiufang1,2,3(), TANG Mingxiu1,2, GUO Chunhua1,2, LIU Tingting1,2
Received:
2023-08-23
Revised:
2023-10-11
Online:
2024-03-25
Published:
2024-03-29
Contact:
ZHU Xiufang
E-mail:202221051098@mail.bnu.edu.cn;zhuxiufang@bnu.edu.cn
LU Dongyan, ZHU Xiufang, TANG Mingxiu, GUO Chunhua, LIU Tingting. Assessment of drought risk changes in China under different temperature rise scenarios[J].Arid Land Geography, 2024, 47(3): 369-379.
Tab. 1
Information of 20 climate models from CMIP6 used in this study"
序号 | 模式名称 | 机构简称 | 国家 | 经纬向格点数 |
---|---|---|---|---|
1 | ACCESS-CM2 | CSIRO-ARCCSS | 澳大利亚 | 192×144 |
2 | ACCESS-ESM1-5 | CSIRO | 澳大利亚 | 192×145 |
3 | CanESM5 | CCCma | 加拿大 | 128×64 |
4 | CanESM5-1 | CCCma | 加拿大 | 128×64 |
5 | CAS-ESM2-0 | CAS | 中国 | 256×128 |
6 | CMCC-ESM2 | CMCC | 意大利 | 288×192 |
7 | EC-Earth3 | EC-Earth-Consortium | 欧盟 | 512×256 |
8 | EC-Earth3-CC | EC-Earth-Consortium | 欧盟 | 512×256 |
9 | EC-Earth3-Veg | EC-Earth-Consortium | 欧盟 | 512×256 |
10 | EC-Earth3-Veg-LR | EC-Earth-Consortium | 欧盟 | 320×160 |
11 | FGOALS-g3 | CAS | 中国 | 180×80 |
12 | FIO-ESM-2-0 | FIO-QLNM | 中国 | 288×192 |
13 | GFDL-ESM4 | NOAA-GFDL | 美国 | 288×180 |
14 | INM-CM4-8 | INM | 俄罗斯 | 180×120 |
15 | INM-CM5-0 | INM | 俄罗斯 | 180×120 |
16 | IPSL-CM6A-LR | IPSL | 法国 | 144×143 |
17 | MIROC6 | MIROC | 日本 | 256×128 |
18 | MPI-ESM1-2-HR | MPI-M | 德国 | 384×192 |
19 | MPI-ESM1-2-LR | MPI-M | 德国 | 192×96 |
20 | MRI-ESM2-0 | MRI | 日本 | 320×160 |
Tab. 2
Years for 2 ℃, 3 ℃, and 4 ℃ temperature rise scenarios for each climate model"
模式名称 | 年份 | ||
---|---|---|---|
2 ℃温升情景 | 3 ℃温升情景 | 4 ℃温升情景 | |
ACCESS-CM2 | 2024—2043 | 2043—2062 | 2058—2077 |
ACCESS-ESM1-5 | 2029—2048 | 2050—2069 | 2068—2087 |
CanESM5 | 2021—2040 | 2037—2056 | 2050—2069 |
CanESM5-1 | 2021—2040 | 2036—2055 | 2050—2069 |
CAS-ESM2-0 | 2029—2048 | 2047—2066 | 2063—2082 |
CMCC-ESM2 | 2033—2052 | 2049—2068 | 2064—2083 |
EC-Earth3 | 2026—2045 | 2048—2067 | 2064—2083 |
EC-Earth3-CC | 2039—2058 | 2056—2075 | 2069—2088 |
EC-Earth3-Veg | 2031—2050 | 2049—2068 | 2065—2084 |
EC-Earth3-Veg-LR | 2034—2053 | 2054—2073 | 2067—2086 |
FGOALS-g3 | 2039—2058 | 2066—2085 | - |
FIO-ESM-2-0 | 2031—2050 | 2050—2069 | 2066—2085 |
GFDL-ESM4 | 2037—2056 | 2061—2080 | - |
INM-CM4-8 | 2037—2056 | 2060—2079 | - |
INM-CM5-0 | 2035—2054 | 2063—2082 | - |
IPSL-CM6A-LR | 2029—2048 | 2045—2064 | 2060—2079 |
MIROC6 | 2037—2056 | 2062—2081 | 2080—2099 |
MPI-ESM1-2-HR | 2039—2058 | 2064—2083 | - |
MPI-ESM1-2-LR | 2040—2059 | 2063—2082 | - |
MRI-ESM2-0 | 2025—2044 | 2052—2071 | 2071—2090 |
[1] | 翟盘茂, 刘静. 气候变暖背景下的极端天气气候事件与防灾减灾[J]. 中国工程科学, 2012, 14(9): 55-63. |
[Zhai Panmao, Liu Jing. Extreme weather/climate events and disaster prevention and mitigation under global warming background[J]. Strategic Study of CAE, 2012, 14(9): 55-63.] | |
[2] | IPCC. Climate change 2021: The physical science basis[M]. Cambridge: Cambridge University Press, 2023. |
[3] | 中国水旱灾害防御公报编写组. 《中国水旱灾害防御公报2020》概要[J]. 中国防汛抗旱, 2021, 31(11): 26-32. |
[Compilation Group of China Flood and Drought Disaster Prevention Bulletin. Summary of “China Flood and Drought Disaster Prevention Bulletin in 2020”[J]. China Flood & Drought Management, 2021, 31(11): 26-32.] | |
[4] |
莫兴国, 胡实, 卢洪健, 等. GCM预测情景下中国21世纪干旱演变趋势分析[J]. 自然资源学报, 2018, 33(7): 1244-1256.
doi: 10.31497/zrzyxb.20170666 |
[Mo Xingguo, Hu Shi, Lu Hongjian, et al. Drought trends over the terrestrial China in the 21st century in climate change scenarios with ensemble GCM projections[J]. Journal of Natural Resources, 2018, 33(7): 1244-1256.]
doi: 10.31497/zrzyxb.20170666 |
|
[5] | 赵佳琪, 张强, 朱秀迪, 等. 中国旱灾风险定量评估[J]. 生态学报, 2021, 41(3): 1021-1031. |
[Zhao Jiaqi, Zhang Qiang, Zhu Xiudi, et al. Quantitative assessment of drought risk in China[J]. Acta Ecologica Sinica, 2021, 41(3): 1021-1031.] | |
[6] |
何斌, 武建军, 吕爱锋. 农业干旱风险研究进展[J]. 地理科学进展, 2010, 29(5): 557-564.
doi: 10.11820/dlkxjz.2010.05.007 |
[He Bin, Wu Jianjun, Lü Aifeng. New advances in agricultural drought risk study[J]. Progress in Geography, 2010, 29(5): 557-564.]
doi: 10.11820/dlkxjz.2010.05.007 |
|
[7] | Liu Y Y, Chen J. Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate[J]. Science of the Total Environment, 2021, 751: 142159, doi: 10.1016/j.scitotenv.2020.142159. |
[8] |
Carrão H, Naumann G, Barbosa P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability[J]. Global Environmental Change, 2016, 39: 108-124.
doi: 10.1016/j.gloenvcha.2016.04.012 |
[9] |
Prabnakorn S, Maskey S, Suryadi F X, et al. Assessment of drought hazard, exposure, vulnerability, and risk for rice cultivation in the Mun River Basin in Thailand[J]. Natural Hazards, 2019, 97(2): 891-911.
doi: 10.1007/s11069-019-03681-6 |
[10] | Fang W, Huang Q, Huang G, et al. Assessment of dynamic drought-induced ecosystem risk: Integrating time-varying hazard frequency, exposure and vulnerability[J]. Journal of Environmental Management, 2023, 342: 118176, doi: 10.1016/j.jenvman.2023.118176. |
[11] | 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445-456. |
[Zhou Tianjun, Zou Liwei, Chen Xiaolong. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.] | |
[12] | 景丞, 姜彤, 苏布达, 等. 共享社会经济路径在土地利用、能源与碳排放研究的应用[J]. 大气科学学报, 2022, 45(3): 397-413. |
[Jing Cheng, Jiang Tong, Su Buda, et al. Multiple application of shared socioeconomic pathways in land use, energy and carbon emission research[J]. Transactions of Atmospheric Sciences, 2022, 45(3): 397-413.] | |
[13] | Oh H, Kim H J, Mehboob M S, et al. Sources and uncertainties of future global drought risk with ISIMIP2b climate scenarios and socioeconomic indicators[J]. Science of the Total Environment, 2023, 859: 160371, doi: 10.1016/j.scitotenv.2022.160371. |
[14] | 薛雨婷, 李谢辉, 贾何佳. 基于CMIP6模式的西南地区旱灾风险未来预估[J]. 水土保持研究, 2023, 30(2): 247-255. |
[Xue Yuting, Li Xiehui, Jia Hejia. Future projection of drought risk in southwestern China based on CMIP6 model[J]. Research of Soil and Water Conservation, 2023, 30(2): 247-255.] | |
[15] | 赵松乔. 中国综合自然地理区划的一个新方案[J]. 地理学报, 1983, 38(1): 1-10. |
[Zhao Songqiao. A new scheme for comprehensive physical regionalization in China[J]. Acta Geographica Sinica, 1983, 38(1): 1-10.]
doi: 10.11821/xb198301001 |
|
[16] | Zhang G, Su X, Singh V P, et al. Appraising standardized moisture anomaly index (SZI) in drought projection across China under CMIP6 forcing scenarios[J]. Journal of Hydrology: Regional Studies, 2021, 37: 100898, doi: 10.1016/j.ejrh.2021.100898. |
[17] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1102-1111. |
[Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1102-1111.] | |
[18] | 粟晓玲, 褚江东, 张特, 等. 西北地区地下水干旱时空演变趋势及对气象干旱的动态响应[J]. 水资源保护, 2022, 38(1): 34-42. |
[Su Xiaoling, Chu Jiangdong, Zhang Te, et al. Spatio-temporal evolution trend of groundwater drought and its dynamic response to meteorological drought in northwest China[J]. Water Resources Protection, 2022, 38(1): 34-42.] | |
[19] |
O’Neill B C, Tebaldi C, van Vuuren D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9: 3461-3482.
doi: 10.5194/gmd-9-3461-2016 |
[20] | Danielson J J, Gesch D B. Global multi-resolution terrain elevation data 2010 (GMTED2010)[R]. Reston, VA, USA: U.S. Geological Survey, 2011. |
[21] | 姜彤, 苏布达, 王艳君, 等. 共享社会经济路径(SSPs)人口和经济格点化数据集[J]. 气候变化研究进展, 2022, 18(3): 381-383. |
[Jiang Tong, Su Buda, Wang Yanjun, et al. Gridded datasets for population and economy under shared socioeconomic pathways for 2020—2100[J]. Climate Change Research, 2022, 18(3): 381-383.] | |
[22] |
Huang J L, Qin D H, Jiang T, et al. Effect of fertility policy changes on the population structure and economy of China: From the perspective of the shared socioeconomic pathways[J]. Earth's Future, 2019, 7(3): 250-265.
doi: 10.1029/2018EF000964 |
[23] |
Hurtt G C, Chini L, Sahajpal R, et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6[J]. Geoscientific Model Development, 2020, 13(11): 5425-5464.
doi: 10.5194/gmd-13-5425-2020 |
[24] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7): 7183-7192.
doi: 10.1029/2000JD900719 |
[25] | GB/T 20481-2017. 中华人民共和国国家标准: 气象干旱等级[S]. 北京: 中国标准出版社, 2017. |
[GB/T 20481-2017. National Standard of the People's Republic of China: Grades of meteorological drought[S]. Beijing: Standards Press of China, 2017.] | |
[26] |
王林, 陈文. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 2014, 33(2): 423-431.
doi: 10.7522/j.issn.1000-0534.2013.00048 |
[Wang Lin, Chen Wen. Applicability analysis of standardized precipitation evapotranspiration index in drought monitoring in China[J]. Plateau Meteorology, 2014, 33(2): 423-431.]
doi: 10.7522/j.issn.1000-0534.2013.00048 |
|
[27] |
Beguería S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.
doi: 10.1002/joc.2014.34.issue-10 |
[28] | Ma Z, Sun P, Zhang Q, et al. The characteristics and evaluation of future droughts across China through the CMIP6 multi-model ensemble[J]. Remote Sensing, 2022, 14: 1097, doi: 10.3390/rs14051097. |
[29] | 费振宇, 孙宏巍, 金菊良, 等. 近50年中国气象干旱危险性的时空格局探讨[J]. 水电能源科学, 2014, 32(12): 5-10. |
[Fei Zhenyu, Sun Hongwei, Jin Juliang, et al. Temporal and spatial patterns of meteorological drought hazard in China for recent 50 years[J]. Water Resources and Power, 2014, 32(12): 5-10.] | |
[30] | 徐玉霞, 许小明, 方锋, 等. 县域尺度下的宝鸡市农业洪水灾害脆弱性评价及区划[J]. 干旱区地理, 2020, 43(3): 652-660. |
[Xu Yuxia, Xu Xiaoming, Fang Feng, et al. Assessment and zoning of vulnerability of agricultural flood diaster in Baoji City based on county scale[J]. Arid Land Geography, 2020, 43(3): 652-660.] | |
[31] | 康利刚, 曹生奎, 曹广超, 等. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin[J]. Arid Land Geography, 2023, 46(7): 1084-1097.] | |
[32] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[33] | Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610. |
[34] | 卢冬燕, 朱秀芳, 刘婷婷, 等. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237. |
[Lu Dongyan, Zhu Xiufang, Liu Tingting, et al. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario[J]. Arid Land Geography, 2023, 46(8): 1227-1237.] | |
[35] | 尹晓东, 董思言, 韩振宇, 等. 未来50 a长江三角洲地区干旱和洪涝灾害风险预估[J]. 气象与环境学报, 2018, 34(5): 66-75. |
[Yin Xiaodong, Dong Siyan, Han Zhenyu, et al. Projected risk of drought and flood at Yangtze River Delta for the next 50 years[J]. Journal of Meteorology and Environment, 2018, 34(5): 66-75.] |
|