收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (9): 1672-1682.doi: 10.12118/j.issn.1000-6060.2024.537 cstr: 32274.14.ALG2024537

• 区域发展 • 上一篇    下一篇

新疆相对贫困空间分布特征及障碍因素分析

芮东升1,2(), 毛璐1,2, 任艳霞1,2, 贡浩轩1,2, 李延萍1,2, 付志聪1,2()   

  1. 1.石河子大学医学院预防医学系,新疆 石河子 832000
    2.新发传染病防控与公共卫生安全兵团重点实验室,新疆 石河子 832000
  • 收稿日期:2024-09-09 修回日期:2024-11-07 出版日期:2025-09-25 发布日期:2025-09-17
  • 通讯作者: 付志聪(1998-),男,硕士研究生,主要从事流行病与卫生统计学研究. E-mail: 15770189555@163.com
  • 作者简介:芮东升(1976-),男,硕士,副教授,主要从事流行病与卫生统计学研究. E-mail: ruidongsheng@shzu.edu.cn
  • 基金资助:
    教育部人文社会科学研究规划基金新疆项目(21XJJAZH001)

Spatial distribution characteristics and obstacle factors of relative poverty in Xinjiang

RUI Dongsheng1,2(), MAO Lu1,2, REN Yanxia1,2, GONG Haoxuan1,2, LI Yanping1,2, FU Zhicong1,2()   

  1. 1. Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
    2. Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang, China
  • Received:2024-09-09 Revised:2024-11-07 Published:2025-09-25 Online:2025-09-17

摘要:

通过对新疆相对贫困空间分布特征进行描述及障碍因素分析,确定贫困空间分异机制,进一步判识减贫效果和制定反贫困策略。选取2016—2021年新疆14个地州市作为研究对象,使用TOPSIS模型并结合熵值法评价相对贫困,利用空间自相关分析相对贫困的空间分布特征,并运用障碍度模型和地理探测器分析各地州市相对贫困的驱动因素。 结果表明:(1) 新疆14个地州市相对贫困分布具有显著的空间分异性和集聚特征,相对贫困发生风险较高的区域主要以南疆阿克苏地区、喀什地区、和田地区、克孜勒苏柯尔克孜自治州及北疆阿勒泰地区为主。(2) 障碍度模型分析发现人均播种面积、人均农业机械总动力、非私营单位就业人员平均工资等因子对新疆各地州市相对贫困发生风险影响显著,经济和人力发展程度是影响空间贫困的主要驱动因素。(3) 相对贫困水平空间分布是各影响因子相互作用的结果,影响因子间存在明显的“木桶效应”,社会因素与其他因素的交互作用将加强对相对贫困的影响。因此,在区域经济的可持续发展过程中,精准减贫和扶贫政策起到了促进发展机会空间均等化的作用。

关键词: 相对贫困, TOPSIS模型, 空间自相关, 障碍度模型, 新疆

Abstract:

This study described the spatial distribution of poverty in Xinjiang of China, analyzed obstacles related to it, determined its spatial differentiation mechanism, and identified the effects of poverty reduction to formulate antipoverty strategies. Data from 14 prefectures and cities in Xinjiang ranging from 2016 to 2021 were selected as research objects. The TOPSIS model and the method of entropy were used to evaluate relative poverty, spatial autocorrelation was used to analyze the spatial distribution characteristics of relative poverty, and the obstacle degree model and geodetector were used to analyze the driving factors for prefectural relative poverty. The results showed that: (1) The relative poverty distribution across the 14 prefectures and cities in Xinjiang exhibited significant spatial differentiation and clustering. Areas having higher poverty risks are primarily concentrated in the southern regions of Xinjiang, namely, Aksu Prefecture, Kashgar Prefecture, Hotan Prefecture, and Kizilsu Kirghiz Autonomous Prefecture, along with Altay Prefecture in northern Xinjiang. (2) The analysis of the degree of obstacle found that factors such as per capita sowing area, per capita total power of agricultural machinery, and average wage of nonprivate employees had significant effects on the risk of relative poverty in Xinjiang. Economic and manpower factor development levels were the main drivers of spatial poverty. (3) The spatial distribution of the relative poverty level was an outcome of the interaction among various influencing factors, with an obvious “barrel effect” existing among them. The interaction between social and other factors will enhance the influence on relative poverty. Hence, for the sustainable development of the regional economy, precise poverty alleviation and poverty reduction policies have played a role in promoting equalization in the space of development opportunities.

Key words: relative poverty, TOPSIS model, spatial autocorrelation, obstacle degree model, Xinjiang