收藏设为首页 广告服务联系我们在线留言
  • 2025年8月15日 星期五

干旱区地理 ›› 2025, Vol. 48 ›› Issue (6): 973-984.doi: 10.12118/j.issn.1000-6060.2024.416 cstr: 32274.14.ALG2024416

• 植被动态变化 • 上一篇    下一篇

黄河流域植被动态及其对气候变化的响应——基于气候干湿分区尺度

王瑞芳1(), 吕宝奇2(), 张文静1   

  1. 1.河南测绘职业学院,河南 郑州 450000
    2.河南省测绘院,河南 郑州 450000
  • 收稿日期:2024-07-10 修回日期:2024-11-27 出版日期:2025-06-25 发布日期:2025-06-18
  • 通讯作者: 吕宝奇(1981-),男,本科,高级工程师,主要从事航测遥感、实景三维建设、国土空间生态修复等方面的研究. E-mail: 140020@hasm.edu.cn
  • 作者简介:王瑞芳(1981-),女,硕士,副教授,主要从事国土空间规划、生态修复、干旱方面的研究. E-mail: wangruifang@hasm.edu.cn
  • 基金资助:
    国家自然科学基金项目(41001226)

Vegetation dynamics and their responses to climate change in the Yellow River Basin: Based on climatic wet and dry zoning scales

WANG Ruifang1(), LYU Baoqi2(), ZHANG Wenjing1   

  1. 1. Henan College of Surveying and Mapping, Zhengzhou 450000, Henan, China
    2. Henan Institute of Surveying and Mapping, Zhengzhou 450000, Henan, China
  • Received:2024-07-10 Revised:2024-11-27 Published:2025-06-25 Online:2025-06-18

摘要: 黄河流域作为中国重要的生态保护和经济发展区域,探究黄河流域不同干湿分区下植被变化特征对调整生态恢复以应对环境变化可能带来的威胁至关重要。基于2000—2022年黄河流域核归一化植被指数(Kernel normalized difference vegetation index,kNDVI)和关键气象驱动因子[降水量(Precipitation,PRE)、气温(Temperature,TEM)],利用多元统计方法分析了流域内不同类型干湿分区的植被动态时空格局,并采用地理探测器模型和约束效应方法分析了黄河流域植被变化的驱动因素,找出了不同干湿区域内的植被变化与气象因子响应之间的共性和区域间的差异。结果表明:(1) 黄河流域植被的kNDVI呈纬向分布,其中湿润区的年均kNDVI最高(0.49);2000—2022年黄河流域84.58%的区域呈上升趋势,以干旱区(68.36%)和半干旱区(93.08%)的改善最为显著。(2) 在黄河流域内降水量对植被的影响普遍强于气温,全流域尺度下两者的偏相关系数分别为0.36和0.19;在半干旱区内这一差异尤为突出,降水量和气温的偏相关系数分别达到0.43和0.22。(3) 在空间分层异质性上,全流域尺度下降水量的q值(0.5338)大于气温的q值(0.2283);且降水量的q值在半干旱区最高(0.4519),而气温的q值则在半湿润区最高(0.2491)。各气象因子在不同干湿分区对植被动态变化的响应呈现出不同特征的约束线。研究结果可为流域生态保护策略的调整和制定提供重要参考,对推动黄河流域高质量发展具有重要意义。

关键词: 植被变化, kNDVI, 干湿分区, 约束效应, 黄河流域

Abstract:

The Yellow River Basin, as a significant ecological protection and economic development area in China, exploring the characteristics of vegetation changes in different dry and wet zones within the basin is crucial for adjusting ecological restoration to address potential threats brought by environmental changes. Based on the kernel normalized difference vegetation index (kNDVI) and key meteorological factors [precipitation (PRE) and temperature (TEM)] from 2000 to 2022, this study utilized multivariate statistical methods to analyze the spatiotemporal patterns of vegetation dynamics in different dry and wet zones within the basin. Additionally, the Geodetector model and constrained effect method were employed to analyze the driving factors of vegetation changes in the Yellow River Basin, and to identify the commonalities and differences in the responses of vegetation changes to meteorological factors in different dry and wet zones. The results show that: (1) The kNDVI values of vegetation in the Yellow River Basin are latitudinally distributed, with the humid zone having the highest average annual kNDVI (0.49). During 2000—2022, 84.58% of the basin showed an upward trend, with the most significant improvements in the arid zone (68.36%) and semi-arid zone (93.08%). (2) Precipitation generally has a stronger influence on vegetation than temperature in the Yellow River Basin, with partial correlation coefficients of 0.36 and 0.19 at the basin scale, respectively. This difference is particularly pronounced in the semi-arid zone, where the partial correlation coefficients of precipitation and temperature reach 0.43 and 0.22, respectively. (3) In terms of spatial heterogeneity, the q value of precipitation (0.5338) is greater than that of temperature (0.2283) at the basin scale. Moreover, the q value of precipitation is highest in the semi-arid zone (0.4519), while the q value of temperature is highest in the semi-humid zone (0.2491). The responses of vegetation dynamics to various meteorological factors in different dry and wet zones exhibit distinct constraint lines. The research findings can provide important references for adjusting and formulating ecological protection strategies in the basin and are of great significance for promoting high-quality development in the Yellow River Basin.

Key words: vegetation change, kernel normalized vegetation index (kNDVI), dry and wet zone, restraint effect, Yellow River Basin