[1] |
马小红, 林菲, 原黎明, 等. 2000—2020年汾河流域植被覆盖度变化及其对生态工程的响应[J]. 中国沙漠, 2023, 43(3): 86-95.
doi: 10.7522/j.issn.1000-694X.2022.00144
|
|
[Ma Xiaohong, Lin Fei, Yuan Liming, et al. Vegetation coverage change and its response to ecological protection project in Fenhe River Basin[J]. Journal of Desert Research, 2023, 43(3): 86-95. ]
doi: 10.7522/j.issn.1000-694X.2022.00144
|
[2] |
罗敏, 孟凡浩, 王云倩, 等. 气候变化下中国植被GPP与土壤水的互馈关系[J]. 地理学报, 2024, 79(1): 218-239.
doi: 10.11821/dlxb202401014
|
|
[Luo Min, Meng Fanhao, Wang Yunqian, et al. Mutual feedback relationship between vegetation GPP and soil moisture in China under climate change[J]. Acta Geographica Sinica, 2024, 79(1): 218-239. ]
doi: 10.11821/dlxb202401014
|
[3] |
吴伶, 刘湘南, 刘美玲, 等. 融合遥感时间序列时空谱信息的森林扰动检测与归因研究进展[J]. 遥感学报, 2024, 28(3): 558-575.
|
|
[Wu Ling, Liu Xiangnan, Liu Meiling, et al. Review of the detection and attribution of multi-type forest disturbances using an ensemble of spatio-temporal-spectral information from remote sensing images[J]. National Remote Sensing Bulletin, 2024, 28(3): 558-575. ]
|
[4] |
Zeng Y, Hao D, Huete A, et al. Optical vegetation indices for monitoring terrestrial ecosystems globally[J]. Nature Reviews Earth & Environment, 2022, 3(7): 477-493.
|
[5] |
Tan C W, Zhang P P, Zhou X X, et al. Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law[J]. Scientific Reports, 2020, 10(1): 929, doi: 10.1038/s41598-020-57750-z.
|
[6] |
韩万强, 靳瑰丽, 岳永寰, 等. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进[J]. 新疆农业科学, 2020, 57(5): 950-957.
doi: 10.6048/j.issn.1001-4330.2020.05.020
|
|
[Han Wanqiang, Jin Guili, Yue Yonghuan, et al. Spectral characteristics and modified vegetation index of three main plants of Seriphidium transiliense desert grassland[J]. Xinjiang Agricultural Sciences, 2020, 57(5): 950-957. ]
doi: 10.6048/j.issn.1001-4330.2020.05.020
|
[7] |
Gao Q, Zhu W, Schwartz M W, et al. Climatic change controls productivity variation in global grasslands[J]. Scientific Reports, 2016, 6(1): 26958, doi: 10.1038/srep26958.
|
[8] |
康尧, 郭恩亮, 王永芳, 等. 温度植被干旱指数在蒙古高原干旱监测中的应用[J]. 应用生态学报, 2021, 32(7): 2534-2544.
doi: 10.13287/j.1001-9332.202107.018
|
|
[Kang Yao, Guo Enliang, Wang Yongfang, et al. Application of temperature vegetation dryness index for drought monitoring in Mongolian Plateau[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2534-2544. ]
doi: 10.13287/j.1001-9332.202107.018
|
[9] |
Li H, Cao Y, Xiao J, et al. A daily gap-free normalized difference vegetation index dataset from 1981 to 2023 in China[J]. Scientific Data, 2024, 11(1): 527, doi: 10.1038/s41597-024-03364-3.
|
[10] |
Jin H, Chen X, Wang Y, et al. Spatio-temporal distribution of NDVI and its influencing factors in China[J]. Journal of Hydrology, 2021, 603: 127129, doi: 10.1016/j.jhydrol.2021.127129.
|
[11] |
Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere[J]. Science Advances, 2021, 7(9): 7447, doi: 10.1126/sciadv.abc7447.
|
[12] |
Wang Q, Moreno-Martínez Á, Muñoz-Marí J, et al. Estimation of vegetation traits with kernel NDVI[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195: 408-417.
|
[13] |
李志杰, 黄贵超, 马訾懿, 等. 基于土地利用变化的城市生境质量时空分异格局及影响因素[J]. 中国城市林业, 2024, 22(2): 135-143.
|
|
[Li Zhijie, Huang Guichao, Ma Ziyi, et al. Spatial and temporal variation patterns of urban habitat quality and its influencing factors based on land use change[J]. Journal of Chinese Urban Forestry, 2024, 22(2): 135-143. ]
|
[14] |
宋进喜, 齐贵增, 佘敦先, 等. 中国植被生产力对干湿变化的响应[J]. 地理学报, 2023, 78(7): 1764-1778.
doi: 10.11821/dlxb202307015
|
|
[Song Jinxi, Qi Guizeng, She Dunxian, et al. Response of vegetation productivity to wet and dry changes in China[J]. Acta Geographica Sinica, 2023, 78(7): 1764-1778. ]
doi: 10.11821/dlxb202307015
|
[15] |
孙善磊, 孙杰, 李洪利, 等. 典型干湿区植被与气候因子的相互响应关系研究[J]. 安徽农业科学, 2010, 38(9): 4713-4716.
|
|
[Sun Shanlei, Sun Jie, Li Hongli, et al. Interactions between vegetation and climatic factors in typical arid and humid regions[J]. Journal of Anhui Agriculture Science, 2010, 38(9): 4713-4716. ]
|
[16] |
韩云环, 马柱国, 李明星, 等. 中国不同干湿区植被变化及其与气候因子的关系[J]. 大气科学, 2023, 47(6): 1680-1692.
|
|
[Han Yunhuan, Ma Zhuguo, Li Mingxing, et al. Vegetation changes and their relationship with climate factors in different dry/wet areas over China[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(6): 1680-1692. ]
|
[17] |
田茜, 杨芳, 王召欢, 等. 陆地生态系统土壤CO2排放对模拟增温的响应特征及影响因素[J]. 生态学报, 2024, 44(5): 1928-1939.
|
|
[Tian Qian, Yang Fang, Wang Zhaohuan, et al. Response of soil CO2emission in terrestrial ecosystems to the simulated warming and its influencing factors[J]. Acta Ecologica Sinica, 2024, 44(5): 1928-1939. ]
|
[18] |
He B, Chen A, Jiang W, et al. The response of vegetation growth to shifts in trend of temperature in China[J]. Journal of Geographical Sciences, 2017, 27(7): 801-816.
doi: 10.1007/s11442-017-1407-3
|
[19] |
Zhang J Y, Yin Y H, Li B Y. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010, 65(1): 3-12.
doi: 10.11821/xb201001002
|
[20] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021
|
[21] |
傅楷翔, 贾国栋, 余新晓, 等. 基于改进遥感生态指数的吐鲁番-哈密地区生态环境质量评价及驱动机制分析[J]. 生态学报, 2024, 44(9): 3911-3923.
|
|
[Fu Kaixiang, Jia Guodong, Yu Xinxiao, et al. Evaluation of ecological environment quality and analysis of driving mechanism in Tulufan-Hami region based on improved remote sensing ecological indices[J]. Acta Ecologica Sinica, 2024, 44(9): 3911-3923. ]
|
[22] |
刘泽, 陈建平. 北京植被时空变化与气候因子相关性[J]. 地质通报, 2021, 40(12): 2159-2166.
|
|
[Liu Ze, Chen Jianping. Correlation between temporal-spatial changes of vegetation and climate factors in Beijing[J]. Geological Bulletin of China, 2021, 40(12): 2159-2166. ]
|
[23] |
吴大放, 马佩芳, 李龙, 等. 基于地理探测器的区域土地利用转型时空演变及因子探测——以珠海市为例[J]. 华南师范大学学报(自然科学版), 2023, 55(4): 50-61.
|
|
[Wu Dafang, Ma Peifang, Li Long, et al. Spatiotemporal variation and factor detection of land use transition based on geodetector: A case study of Zhuhai[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(4): 50-61. ]
|
[24] |
Zhang Z, Song Y, Wu P. Robust geographical detector[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 109: 102782, doi: 10.1016/j.jag.2022.102782.
|
[25] |
An Q, Yuan X, Zhang X, et al. Spatio-temporal interaction and constraint effects between ecosystem services and human activity intensity in Shaanxi Province, China[J]. Ecological Indicators, 2024, 160: 111937, doi: 10.1016/j.ecolind.2024.111937.
|
[26] |
薛联青, 肖颖, 刘远洪, 等. 黄河流域植被水分利用效率对干旱的时空累积响应[J]. 水资源保护, 2023, 39(4): 32-41.
|
|
[Xue Lianqing, Xiao Ying, Liu Yuanhong, et al. Spatiotemporal accumulation response of vegetation water use efficiency to drought in the Yellow River Basin[J]. Water Resources Protection, 2023, 39(4): 32-41. ]
|
[27] |
Bai X, Fan Z, Yue T. Dynamic pattern-effect relationships between precipitation and vegetation in the semi-arid and semi-humid area of China[J]. Catena, 2023, 232: 107425, doi: 10.1016/j.catena.2023.107425.
|
[28] |
郭富印, 刘晓煌, 张文博, 等. 2000—2040年黄河流域(河南段)生境质量时空格局演变及驱动力分析[J]. 现代地质, 2024, 38(3): 599-611.
|
|
[Guo Fuyin, Liu Xiaohuang, Zhang Wenbo, et al. Evolution of the spatial and temporal patterns of habitat qualiy and analysis of the driving forces in Yellow River Basin (Henan section) from 2000 to 2040[J].Geoscience, 2024, 38(3): 599-611. ]
|
[29] |
Li C, Fu B, Wang S, et al. Drivers and impacts of changes in China’s drylands[J]. Nature Reviews Earth & Environment, 2021, 2(12): 858-873.
|
[30] |
Liu L, Gou X, Wang X, et al. Relationship between extreme climate and vegetation in arid and semi-arid mountains in China: A case study of the Qilian Mountains[J]. Agricultural and Forest Meteorology, 2024, 348: 109938, doi: 10.1016/j.agrformet.2024.109938.
|
[31] |
姜凯升, 刘宇, 刘英, 等. 西北地区植被覆盖度与气候因子响应关系探究[J]. 测绘科学, 2023, 48(6): 172-180.
|
|
[Jiang Kaisheng, Liu Yu, Liu Ying, et al. Research on the relationship between vegetation coverage and climate factor response in northwest China[J]. Science of Surveying and Mapping, 2023, 48(6): 172-180. ]
|
[32] |
Sun G Q, Li L, Li J, et al. Impacts of climate change on vegetation pattern: Mathematical modeling and data analysis[J]. Physics of Life Reviews, 2022, 43: 239-270.
|
[33] |
王春雅, 王金牛, 崔霞, 等. 藏东南三江并流核心区植被时空动态变化及其气候驱动力分析[J]. 地理研究, 2021, 40(11): 3191-3207.
doi: 10.11821/dlyj020201123
|
|
[Wang Chunya, Wang Jinniu, Cui Xia, et al. Spatio-temporal change in vegetation patterns and its climatic drivers in the core region of Three Parallel Rivers in southeast Tibet[J]. Geographical Research, 2021, 40(11): 3191-3207. ]
|
[34] |
Wang K, Zhou J, Tan M L, et al. Impacts of vegetation restoration on soil erosion in the Yellow River Basin, China[J]. Catena, 2024, 234: 107547, doi: 10.1016/j.catena.2023.107547.
|
[35] |
Zhu Y, Zhang Y, Zhang Z, et al. Converted vegetation type regulates the vegetation greening effects on land surface albedo in arid regions of China[J]. Agricultural and Forest Meteorology, 2022, 324: 109119, doi: 10.1016/j.agrformet.2022.109119.
|
[36] |
Yin Y, Deng H, Ma D. Complex effects of moisture conditions and temperature enhanced vegetation growth in the arid/humid transition zone in northern China[J]. Science of the Total Environment, 2022, 805: 150152, doi: 10.1016/j.scitotenv.2021.150152.
|
[37] |
薛联青, 王文壮, 刘远洪, 等. 黄河流域植被总初级生产力对持续性干旱水分亏缺的响应[J]. 水资源保护, 2024, 40(3): 44-51.
|
|
[Xue Lianqing, Wang Wenzhuang, Liu Yuanhong, et al. Response of gross primary productivity of vegetation to persistent drought-induced water deficit in the Yellow River Basin[J]. Water Resources Protection, 2024, 40(3): 44-51. ]
|
[38] |
Bita C, Gerats T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops[J]. Frontiers in Plant Science, 2013, 4: 273, doi: 10.3389/fpls.2013.00273.
pmid: 23914193
|
[39] |
Xu H J, Wang X P, Zhao C Y. Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102418, doi: 10.1016/j.jag.2021.102418.
|