收藏设为首页 广告服务联系我们在线留言
  • 2025年7月23日 星期三

干旱区地理 ›› 2025, Vol. 48 ›› Issue (5): 916-929.doi: 10.12118/j.issn.1000-6060.2024.357 cstr: 32274.14.ALG2024357

• 区域发展 • 上一篇    下一篇

黄河流域市域可持续发展状态评价及其驱动因素分析

崔盼盼1(), 张丽君1, 秦耀辰1,2(), 夏四友3,4   

  1. 1.河南大学地理与环境学院,黄河中下游数字地理技术教育部重点实验室,河南 开封 475004
    2.河南大学黄河文明与可持续发展研究中心暨黄河文明省部共建协同创新中心,河南 开封 475004
    3.中国科学院地理科学与资源研究所可持续发展分析与模拟重点实验室,北京 100101
    4.纽约州立大学布法罗分校地理系,纽约 布法罗 14261
  • 收稿日期:2024-06-07 修回日期:2024-07-05 出版日期:2025-05-25 发布日期:2025-05-13
  • 通讯作者: 秦耀辰(1959-),男,博士,教授,主要从事区域可持续发展研究. E-mail: qinyc@henu.edu.cn
  • 作者简介:崔盼盼(1990-),女,博士,讲师,主要从事区域可持续发展研究. E-mail: cuipan3353@163.com
  • 基金资助:
    河南省优秀青年科学基金项目(222300420030);国家自然科学基金项目(42171295);国家自然科学基金项目(42071294);国家自然科学基金项目(42101206);河南省高等教育教学改革项目(2019SJGLX043);河南省青年科学基金项目(222300420132)

Evaluation and its driving factors of sustainable development states in the cities of the Yellow River Basin

CUI Panpan1(), ZHANG Lijun1, QIN Yaochen1,2(), XIA Siyou3,4   

  1. 1. College of Geography and Environmental Science/Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Kaifeng 475004, Henan, China
    2. Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng 475004, Henan, China
    3. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Science and Natural Resources Research, CAS, Beijing 100101, China
    4. Department of Geography, University at Buffalo-SUNY, Buffalo 14261, New York, America
  • Received:2024-06-07 Revised:2024-07-05 Published:2025-05-25 Online:2025-05-13

摘要: 可持续发展状态研究是区域实现科学决策与有效管理的重要依据。遵循系统交互思想构建可持续发展状态评价框架,采用资产-负债方法研判2006—2020年黄河流域可持续发展状态与规律,基于Weaver-Thomas模型识别其内在主导驱动因素。结果表明:(1) 黄河流域可持续发展状态不容乐观。资产水平虽向好发展,但负债、净资产水平均呈下行趋势。(2) 资产、负债和净资产水平的空间分异特征显著。资产水平在纬向上表现出由“倒U”型演变特征转为逐步攀升态势,在径向上为相对稳定的“北低、南高”空间格局;负债水平具有自北向南逐步递减的圈层空间结构,而净资产水平的高值和低值区均具有时间上的惯性和空间上的集聚趋同特征。(3) 各类型城市主导驱动因素存在差异。低资产-低负债类型城市的主导驱动因素数量最多且结构复杂,生态效率是主要的影响系统;其余3种类型城市具有数量少且以资产因素影响为主的特征,但低资产-高负债类型城市的负债驱动力较大。未来黄河流域城市需依据自身发展特点因地制宜地制定发展路径。

关键词: 系统交互, 资产, 负债, Weaver-Thomas模型, 黄河流域

Abstract:

Research on the sustainable development status of a region is critical for facilitating informed decision-making and effective management. This study established an evaluation framework for assessing sustainable development employing the concept of pairwise system interaction. The asset-debt method was applied to evaluate the sustainable development status of the Yellow River Basin in China from 2006 to 2020. Further, the internal dominant drivers of sustainable development were identified using the Weaver-Thomas model. The results indicated the following. (1) The sustainable development states of the Yellow River Basin are not optimistic. Although the asset level has exhibited positive growth, both debt and net asset levels exhibit a declining trend, thereby signaling an imbalance. (2) The spatial distribution of asset, debt, and net asset levels demonstrates significant differentiation characteristics. It follows an evolving pattern from an inverted “U” type to a gradual climbing trend across latitudinal directions. Radially, it yields a relatively stable pattern of “low in the north and high in the south”. In addition, the debt level exhibits a circular spatial structure, decreasing incrementally from north to south. Both the high- and low-value areas of net assets exhibit temporal inertia and spatial agglomeration. (3) Certain differences exist in the dominant drivers of different types of cities. Among them, the low asset-low debt type cities exhibit intense leading dynamics and complex structures, with ecological efficiency being the primary driving system. Conversely, the other three city types demonstrate less intense leading dynamics, which are primarily influenced by asset-related factors. However, in low asset-high debt cities, debt-related dynamics play a relatively larger role. Therefore, cities in the Yellow River Basin should optimize development paths based on their own development characteristics in the future.

Key words: system interaction, assets, debts, Weaver-Thomas model, Yellow River Basin