干旱区地理 ›› 2024, Vol. 47 ›› Issue (6): 1047-1060.doi: 10.12118/j.issn.1000-6060.2023.346 cstr: 32274.14.ALG2023346
侯晋星1,2(), 潘换换1,2, 杜自强1,2(
), 武志涛1,2, 张红1,2
收稿日期:
2023-07-08
修回日期:
2023-10-07
出版日期:
2024-06-25
发布日期:
2024-07-09
通讯作者:
杜自强(1974-),男,博士,教授,主要从事植被与生态遥感、土地变化科学、生态系统服务与人居福祉研究. E-mail: duzq@sxu.edu.cn作者简介:
侯晋星(1996-),女,硕士研究生,主要从事生态系统服务研究. E-mail: m14735850096@163.com
基金资助:
HOU Jinxing1,2(), PAN Huanhuan1,2, DU Ziqiang1,2(
), WU Zhitao1,2, ZHANG Hong1,2
Received:
2023-07-08
Revised:
2023-10-07
Published:
2024-06-25
Online:
2024-07-09
摘要:
生态系统服务是支撑经济社会发展和人类生存条件的要素,其中水生态系统服务对于维持人类生产生活以及生态环境等都具有重要意义。然而,目前对流域水生态服务研究相对薄弱。基于InVEST(Integrated valuation of ecosystem services and trade offs)模型量化了山西黄河流域2000—2020年的产水量、水源涵养和水质净化服务的时空分布格局。探讨了气候条件和土地利用与产水量、水源涵养和水质净化服务之间的关系。结果表明:(1) 近20 a,流域的产水量出现了波动上升的变化,且高峰值的出现在2020年,达152.37 mm。在空间上产水量分布差异明显,高值区范围扩大,低值区范围缩小。土地利用和气候变化共同影响山西黄河流域产水服务时空变化。气候变化对流域产水服务的贡献率远大于土地利用变化。(2) 近20 a,流域水源涵养量与产水量变化趋势基本一致,整体呈波动上升趋势。高峰值的出现在2020年,达100.32 mm。空间上,林地水源涵养量增加最多,其次为草地,降水量大且蒸散相对较小的地区水源涵养能力显著高于其他地区。相比土地利用,气候因素对水源涵养量的影响更大。(3) 在水质净化方面,同时期流域N、P输出量呈现逐年递减的态势,在2020年N、P输出量均达到最低值,分别为0.4739 kg·hm-2和0.0366 kg·hm-2。空间上,山区和丘陵地区的N、P输出量显著低于平原和盆地。人类农业活动特别是对农业用地中化肥的广泛投入是造成水环境污染的主要原因,同时伴随城市化发展的不透水地面的扩张也会对研究区水质净化造成一定的影响。研究结果可为山西黄河流域水生态系统保护及生态补偿与流域科学管理提供参考。
侯晋星, 潘换换, 杜自强, 武志涛, 张红. 山西黄河流域水生态系统服务时空分析[J]. 干旱区地理, 2024, 47(6): 1047-1060.
HOU Jinxing, PAN Huanhuan, DU Ziqiang, WU Zhitao, ZHANG Hong. Spatiotemporal analysis of water ecosystem services of the Yellow River Basin in Shanxi Province[J]. Arid Land Geography, 2024, 47(6): 1047-1060.
表1
数据来源"
基础数据 | 数据来源 | 分辨率 | 年份 | 处理方法 |
---|---|---|---|---|
土地利用数据 | 国家冰川冻土沙漠科学数据中心( | 30 m | 2000—2020 | ArcGIS裁剪投影 |
日均降水量数据 | 国家气象科学数据中心( | 1 km | 2000—2020 | ArcGIS裁剪投影 |
年均潜在蒸散量 | 国家青藏高原科学数据中心( | 1 km | 2000—2020 | ArcGIS裁剪投影 |
HWSD土壤数据库 | 寒旱区科学数据中心( | 1 km | 2009 | ArcGIS裁剪投影 |
DEM高程数据 | 地理空间数据云平台( | 90 m | 2000 | ArcGIS裁剪投影 |
植物有效含水量 | HWSD土壤数据库 | 1 km | 2009 | 通过对土壤类型的质地及土壤有机质含量计算获取 |
土壤饱和含水量 | HWSD土壤数据库 | 1 km | 2009 | 基于土壤类型的质地(土壤黏粒、粉粒、砂砾百分比含量)等因素计算获得 |
地形指数 | HWSD土壤数据库 | 1 km | 2009 | 根据土壤深度、百分坡度和汇水面积计算 |
Zhang系数 | 模型手册及文献 | - | - | 参考已有研究成果和InVEST模型手册 |
流速系数 | 模型手册及文献 | - | - | 参照模型数据库进行赋值 |
生物物理参数 | 模型手册及文献 | - | - | 参考已有研究成果和InVEST模型手册 |
表7
氮输出量在不同土地利用中的占比"
地类 | 2000年 | 2005年 | 2010年 | 2015年 | 2020年 |
---|---|---|---|---|---|
未分类地区 | 0.004 | 0.001 | 0.001 | 0.000 | 0.002 |
农田 | 37.507 | 36.429 | 34.628 | 35.218 | 35.225 |
林地 | 23.255 | 24.407 | 25.712 | 27.889 | 27.873 |
灌木 | 1.289 | 1.220 | 0.729 | 0.513 | 0.512 |
草地 | 34.520 | 34.435 | 34.866 | 31.484 | 31.492 |
水域 | 0.259 | 0.190 | 0.204 | 0.233 | 0.235 |
裸地 | 0.003 | 0.002 | 0.003 | 0.008 | 0.009 |
不透水面 | 3.163 | 3.316 | 3.857 | 4.655 | 4.652 |
表8
P输出量在不同土地利用中的占比"
地类 | 2000年 | 2005年 | 2010年 | 2015年 | 2020年 |
---|---|---|---|---|---|
未分类地区 | 0.002 | 0.001 | 0.001 | 0.000 | 0.002 |
农田 | 37.441 | 36.515 | 34.671 | 34.853 | 35.309 |
林地 | 23.152 | 23.884 | 25.142 | 25.994 | 27.425 |
灌木 | 1.275 | 1.096 | 0.673 | 0.677 | 0.498 |
草地 | 35.080 | 34.922 | 35.354 | 33.935 | 31.827 |
水域 | 0.135 | 0.168 | 0.201 | 0.232 | 0.228 |
裸地 | 0.002 | 0.002 | 0.002 | 0.005 | 0.007 |
不透水面 | 2.913 | 3.412 | 3.956 | 4.304 | 4.704 |
[1] | 隋露, 蒲春玲, 刘志有, 等. 基于PLUS模型的乌鲁木齐市生态服务价值权衡协同探究[J]. 干旱区地理, 2023, 46(1): 159-168. |
[Sui Lu, Pu Chunling, Liu Zhiyou, et al. Trade-off synergy of ecosystem service value in Urumqi City based on PLUS model[J]. Arid Land Geography, 2023, 46(1): 159-168.] | |
[2] | Qin H X, Chen Y J. Spatial non-stationarity of water conservation services and landscape patterns in Erhai Lake Basin, China[J]. Ecological Indicators, 2023, 146: 109894, doi: 10.1016/j.ecolind.2023.109894. |
[3] | Valente R A, De Mello K, Metedieri J S F, et al. A multicriteria evaluation approach to set forest restoration priorities based on water ecosystem services[J]. Journal of Environmental Management, 2021, 285: 112049, doi: 10.1016/j.jenvman.2021.112049. |
[4] | 余珮珩, 冯明雪, 刘斌, 等. 顾及生态安全格局的流域生态保护红线划定及管控研究——以云南杞麓湖流域为例[J]. 湖泊科学, 2020, 32(1): 89-99. |
[Yu Peiheng, Feng Mingxue, Liu Bing, et al. Demarcation and administration of watershed ecological protection red line considering the ecological security pattern: A case of the Qilu Lake watershed, Yunnan Province[J]. Journal of Lake Sciences, 2020, 32(1): 89-99.] | |
[5] | Terrado M, Acuñaa V, Ennaanay D, et al. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean Basin[J]. Ecological Indicators, 2014, 37: 199-209. |
[6] | 丁家宝, 张福平, 张元, 等. 气候与土地利用变化背景下青海湖流域产水量时空变化[J]. 兰州大学学报(自然科学版), 2022, 58(1): 47-56. |
[Ding Jiabao, Zhang Fuping, Zhang Yuan, et al. Temporal and spatial variations in water yield of the Qinghai Lake water system under climate and land use changes[J]. Journal of Lanzhou University (Natural Sciences Edition), 2022, 58(1): 47-56.] | |
[7] |
李芳, 张金龙, 杨环. 基于InVEST模型的黑河流域上游1990——2018年产水量模拟[J]. 高原气象, 2022, 41(3): 698-707.
doi: 10.7522/j.issn.1000-0534.2022.00057 |
[Li Fang, Zhang Jinlong, Yang Huan. Simulation of annual water yield in the upper Heihe River Basin from 1990 to 2018 based on InVEST[J]. Plateau Meteorology, 2022, 41(3): 698-707.]
doi: 10.7522/j.issn.1000-0534.2022.00057 |
|
[8] | 童建, 陈霞, 罗俐雅, 等. 秦淮河流域水源涵养与水质净化服务空间分布特征[J]. 江苏水利, 2022(11): 31-36. |
[Tong Jian, Chen Xia, Luo Liya, et al. Spatial distribution characteristics of water resource conservation and water purification services in the Qinhuai River Basin[J]. Jiangsu Water Resources, 2022(11): 31-36.] | |
[9] | 娄梦婕, 史明昌, 郭虹扬, 等. 基于InVEST模型的白洋淀——大清河流域水源涵养分析[J]. 中国水土保持科学, 2022, 20(5): 118-123. |
[Lou Mengjie, Shi Mingchang, Guo Hongyang, et al. Water conservation analysis of Baiyangdian: Daqing River Basin based on InVEST model[J]. Science of Soil and Water Conservation, 2022, 20(5): 118-123.] | |
[10] | 范亚宁, 袁家根, 耿盼, 等. 秦岭北麓及周边生态系统水质净化功能评估[J]. 环境科学与技术, 2022, 45(3): 64-72. |
[Fan Yaning, Yuan Jiagen, Geng Pan, et al. Water purification function evaluation of the northern slop of Qinling Mountains and its surrounding ecological system[J]. Environmental Science & Technology, 2022, 45(3): 64-72.] | |
[11] | 刘灿均, 门宝辉, 申耀铎, 等. 滦河流域土壤保持和水质净化服务及其权衡与协同关系[J]. 生态学报, 2023, 43(14): 5740-5752. |
[Liu Canjun, Men Baohui, Shen Yaoduo, et al. Soil conservation and water purification services and their trade-offs and synergies in Luanhe River Basin[J]. Acta Ecologica Sinica, 2023, 43(14): 5740-5752.] | |
[12] | 张文静, 孙小银, 周俊. 南四湖流域关键生态系统服务的时空权衡关系[J]. 生态学报, 2021, 41(20): 8003-8015. |
[Zhang Wenjing, Sun Xiaoyin, Zhou Jun. Spatio-temporal dynamics of tradeoffs between crucial ecosystem services in Nansihu Lake Basin[J]. Acta Ecologica Sinica, 2021, 41(20): 8003-8015.] | |
[13] | 汪晓珍, 吴建召, 吴普侠, 等. 2000—2015年黄土高原生态系统水源涵养、土壤保持和NPP服务的时空分布与权衡/协同关系[J]. 水土保持学报, 2021, 35(4): 114-121, 128. |
[Wang Xiaozhen, Wu Jianzhao, Wu Puxia, et al. Spatial and temporal distribution and trade-offs of water conservation soil conservation and NPP services in the ecosystems of the Loess Plateau from 2000 to 2015[J]. Journal of Soil and Water Conservation, 2021, 35(4): 114-121, 128.] | |
[14] | Zhang P, Liu X P, Zhu W H, et al. Spatio-temporal changes in water conservation ecosystem service during 1990—2019 in the Tumen River Basin, northeast China[J]. Chinese Geographical Science, 2023, 33(1): 102-115. |
[15] | 杜佳衡, 王锦. 基于InVEST模型的大理州永平县水生态系统服务功能时空变化分析[J]. 西部林业科学, 2021, 50(6): 91-102. |
[Du Jiaheng, Wang Jin. Analysis of spatio-temporal changes of water ecosystem service function in Yongping County, Dali Prefecture based on InVEST model[J]. Journal of West China Forestry Science, 2021, 50(6): 91-102.] | |
[16] | Yang J, Xie B P, Zhang D G, et al. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China[J]. Environmental Earth Sciences, 2021, 80(3): 1-12. |
[17] | 郭珊珊. 黄河流域生态系统健康与城镇化耦合协调研究[D]. 徐州: 中国矿业大学, 2022. |
[Guo Shanshan. Research on the coupling and coordination of ecosystem health and urbanization in the Yellow River Basin[D]. Xuzhou: China University of Mining and Technology, 2022.] | |
[18] | Wang X J, Liu G X, Lin D R, et al. Water yield service influence by climate and land use change based on InVEST model in the monsoon hilly watershed in south China[J]. Geomatics, Natural Hazards and Risk, 2022, 13(1): 2024-2048. |
[19] | 姬倩倩, 潘换换, 吴树荣, 等. 山西黄河流域“三生”空间重构和降水变化对产水服务的影响[J]. 干旱区研究, 2023, 40(1): 132-142. |
[Ji Qianqian, Pan Huanhuan, Wu Shurong, et al. Effect of spatial reconstruction of “production-living-ecology” space and precipitation changes on water yield services in the Yellow River Basin in Shanxi Province[J]. Arid Zone Research, 2023, 40(1): 132-142.] | |
[20] | Li M, Li S, Liu H, et al. Balancing water ecosystem services: Assessing water yield and purification in Shanxi[J]. Water, 2023, 15(18): 3261, doi: 10.3390/w15183261. |
[21] |
陈竹安, 刘子强, 危小建, 等. 2000—2019年鄱阳湖生态经济区水源涵养时空变化分析[J]. 测绘通报, 2022(8): 1-6.
doi: 10.13474/j.cnki.11-2246.2022.0253 |
[Chen Zhu’an, Liu Ziqiang, Wei Xiaojian, et al. Spatio-temporal changes of water conservation in Poyang Lake ecological economic zone from 2000 to 2019[J]. Bulletin of Surveying and Mapping, 2022(8): 1-6.]
doi: 10.13474/j.cnki.11-2246.2022.0253 |
|
[22] | 叶敦雨, 孙小银, 单瑞峰. 南四湖流域近45年水质净化服务功能的时空演变及其影响因素分析[J]. 生态与农村环境学报, 2023, 39(8): 990-998. |
[Ye Dunyu, Sun Xiaoyin, Shan Ruifeng. Spatio-temporal quantification of water purification services function dynamics and its driving forces in the Nansihu Lake Basin over the past 45 years[J]. Journal of Ecology and Rural Environment, 2023, 39(8): 990-998.] | |
[23] | 陈泽怡, 余珮珩, 陈奕云, 等. 汉江流域水源涵养和水质净化服务时空分析[J]. 生态经济, 2022, 38(4): 193-200. |
[Chen Zeyi, Yu Peiheng, Chen Yiyun, et al. Spatiotemporal variation of water conservation and water quality improvement services in Hanjiang Basin[J]. Ecological Economy, 2022, 38(4): 193-200.] | |
[24] | 吴瑞, 刘桂环, 文一惠. 基于InVEST模型的官厅水库流域产水和水质净化服务时空变化[J]. 环境科学研究, 2017, 30(3): 406-414. |
[Wu Rui, Liu Guihuan, Wen Yihui. Spatiotemporal variations of water yield and water quality purification service functions in Guanting Reservoir Basin based on InVEST model[J]. Research of Environmental Sciences, 2017, 30(3): 406-414.] | |
[25] | 陈泽怡, 余珮珩, 陈奕云, 等. 共享社会经济路径下汉江流域产水和水质净化服务时空演变[J]. 中国生态农业学报, 2021, 29(10): 1800-1814. |
[Chen Zeyi, Yu Peiheng, Chen Yiyun, et al. Spatio-temporal changes of water resources ecosystem services in the Hanjiang River Basin based on the shared socioeconomic pathway[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1800-1814.] | |
[26] | 赵建华, 刘翠善, 王国庆, 等. 近60年来黄河流域气候变化及河川径流演变与响应[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3): 1-5, 12. |
[Zhao Jianhua, Liu Cuishan, Wang Guoqing, et al. Evolution of stream flow in the Yellow River during the past 60 years and its response to climate change[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 1-5, 12.] | |
[27] | 刘勤, 严昌荣, 赵彩霞, 等. 黄河流域日潜在蒸散量变化及气象敏感要素分析[J]. 农业工程学报, 2014, 30(17): 157-166, 342. |
[Liu Qin, Yan Changrong, Zhao Caixia, et al. Changes of daily potential evapotranspiration and analysis of its sensitivity coefficients to key climatic variables in Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 157-166, 342.] | |
[28] | 鲍振鑫, 严小林, 王国庆, 等. 1956—2016年黄河流域河川径流演变规律[J]. 水资源与水工程学报, 2019, 30(5): 52-57. |
[Bao Zhenxin, Yan Xiaolin, Wang Guoqing, et al. The trend in streamflow of the Yellow River Basin during 1956—2016[J]. Journal of Water Resources and Water Engineering, 2019, 30(5): 52-57.] | |
[29] | 童瑞, 杨肖丽, 任立良, 等. 黄河流域1961—2012年蒸散发时空变化特征及影响因素分析[J]. 水资源保护, 2015, 31(3): 16-21. |
[Tong Rui, Yang Xiaoli, Ren Liliang, et al. Temporal and spatial characteristics of evapotranspiration in the Yellow River Basin during 1961—2012 and analysis of its influence factors[J]. Water Resources Protection, 2015, 31(3): 16-21.] | |
[30] | 郑续, 魏乐民, 郭建军, 等. 基于地理探测器的干旱区内陆河流域产水量驱动力分析——以疏勒河流域为例[J]. 干旱区地理, 2020, 43(6): 1477-1485. |
[Zheng Xu, Wei Lemin, Guo Jianjun, et al. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: A case of the Shule River[J]. Arid Land Geography, 2020, 43(6): 1477-1485.] | |
[31] | Fang L L, Wang L C, Chen W X, et al. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins[J]. Journal of Cleaner Production, 2021, 314: 127995, doi: 10.1016/j.jclepro.2021.127995. |
[32] | Geng W L, Li Y Y, Zhang P Y, et al. Analyzing spatio-temporal changes and trade-offs/synergies among ecosystem services in the Yellow River Basin, China[J]. Ecological Indicators, 2022, 138: 108825, doi: 10.1016/j.ecolind.2022.108825. |
[33] |
杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应[J]. 应用生态学报, 2020, 31(8): 2731-2739.
doi: 10.13287/j.1001-9332.202008.015 |
[Yang Jie, Xie Baopeng, Zhang Degang. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2731-2739.]
doi: 10.13287/j.1001-9332.202008.015 |
|
[34] | 王冶, 薛忠财, 武智勇, 等. 气候和土地利用/覆被变化对武烈河流域产水服务与氮磷净化能力的影响[J]. 安徽农业科学, 2022, 50(23): 54-60, 67. |
[Wang Ye, Xue Zhongcai, Wu Zhiyong, et al. Effect of climate and land use/land cover changes on water yield service and nitrogen and phosphorus purification capacity in Wulie River Basin[J]. Journal of Anhui Agricultural Sciences, 2022, 50(23): 54-60, 67.] |
[1] | 石莹, 别强, 苏晓杰, 李欣璋. 基于InVEST模型的水源涵养功能评价的时空变化——以兰州市为例[J]. 干旱区地理, 2024, 47(9): 1518-1529. |
[2] | 超宝, 赵媛媛, 武海岩, 李媛, 苏宁. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586. |
[3] | 张鑫, 张丹, 张广森, 宋玫. 关中平原城市群生态系统服务时空特征及生态功能区划分[J]. 干旱区地理, 2024, 47(9): 1587-1595. |
[4] | 陈聪, 唐英, 史承勇, 杜怡帆, 赵丽娜, 姜旭妍. 黄河流域遗产资源空间分布与区域协同保护[J]. 干旱区地理, 2024, 47(7): 1220-1232. |
[5] | 董晓媛, 胥德泽, 施小斌, 杜森. 黄河流域甘肃段生态敏感性评价研究——以广河县为例[J]. 干旱区地理, 2024, 47(4): 599-611. |
[6] | 胡瑞媛, 畅建霞, 郭爱军, 王义民. 塔里木河干流生态系统变化与生态效益分析[J]. 干旱区地理, 2024, 47(4): 622-633. |
[7] | 王嘉嘉, 张轲. 生态保护视角下的黄河流域高质量发展非均衡性及演进趋势分析[J]. 干旱区地理, 2024, 47(4): 695-706. |
[8] | 慕石雷, 杨玉欢, 乌日陶克套胡. 黄河流域五大城市群PM2.5时空演变与影响因素探讨[J]. 干旱区地理, 2024, 47(4): 707-719. |
[9] | 吴尚, 翟彬, 程利莎. 黄河流域城市创新能力测度及空间分异研究[J]. 干旱区地理, 2024, 47(4): 720-732. |
[10] | 张明斗, 任衍婷, 周亮. 黄河流域城市生态韧性时空演变特征及影响因素分析[J]. 干旱区地理, 2024, 47(3): 445-454. |
[11] | 孟宪文, 曹君, 薛占金. 黄土高原矿区生态系统服务价值的时空变化——以平朔矿区为例[J]. 干旱区地理, 2024, 47(3): 455-464. |
[12] | 周成, 赵亚玲, 任敏敏, 靳轶婷, 吕丝丝. 黄河流域国家湿地公园时空分异、重心演化与驱动因素分析[J]. 干旱区地理, 2024, 47(3): 506-514. |
[13] | 王慧娴, 杨蓓, 杨宁君, 李璐瑶. 黄河流域旅游经济差异及关键驱动因素研究[J]. 干旱区地理, 2024, 47(3): 515-527. |
[14] | 石彩霞, 贺小荣. “双碳”目标下黄河流域城市绿色发展效率测度及提升路径[J]. 干旱区地理, 2024, 47(3): 528-538. |
[15] | 万赟, 吴文恒, 刘金凤, 史海金, 刘力萌. 近30 a黄河流域中心城市空间扩展特征及启示[J]. 干旱区地理, 2024, 47(2): 281-292. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 169
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|