干旱区地理 ›› 2021, Vol. 44 ›› Issue (5): 1384-1395.doi: 10.12118/j.issn.1000–6060.2021.05.19
孙丽蓉1,周冬梅1(),岑国璋1,马静1,党锐2,倪帆1,张军1,3
收稿日期:
2020-12-21
修回日期:
2021-04-26
出版日期:
2021-09-25
发布日期:
2021-09-22
通讯作者:
周冬梅
作者简介:
孙丽蓉(1996-),女,硕士研究生,主要从事农业水土资源利用等方面的研究. E-mail: 基金资助:
SUN Lirong1,ZHOU Dongmei1(),CEN Guozhang1,MA Jing1,DANG Rui2,NI Fan1,ZHANG Jun1,3
Received:
2020-12-21
Revised:
2021-04-26
Online:
2021-09-25
Published:
2021-09-22
Contact:
Dongmei ZHOU
摘要:
疏勒河流域地处河西走廊最西端,是典型的干旱内陆河流域,生态环境极其脆弱,也是我国重要的生态屏障之一。借助Fragstats软件从斑块和景观2个尺度,结合2000-2018年土地利用数据,评价分析疏勒河流域景观生态风险时空变化特征,利用地理探测器定量分析了该流域景观生态风险驱动因素。结果表明:(1) 疏勒河流域主要景观类型为未利用地和草地,其斑块个数(NP)、景观形状指数(LSI)、最大斑块指数(LPI)和聚集度指数(AI)值均较高;2000-2018年蔓延度指数(CONTAG)值下降、香农多样性指数(SHDI)和香农均匀度指数(SHEI)值缓慢上升,流域景观破碎度严重。(2) 疏勒河流域景观生态风险空间分布呈现北高南低,2000-2018年呈现流域景观生态风险逐渐下降趋势,其中较高风险和高风险地区面积下降明显。(3) 人为干扰度是影响景观生态风险空间分布的主要因子,归一化植被指数(NDVI)次之,人口密度影响最小;景观生态风险的影响均为双因子增强或非线性增强,无显著差异大多表现在自然和自然因子间,自然和人为因子之间存在显著性差异。因此,对流域进行景观生态风险指数评价和驱动因素分析至关重要。
孙丽蓉,周冬梅,岑国璋,马静,党锐,倪帆,张军. 基于地理探测器模型的疏勒河流域景观生态风险评价及驱动因素分析[J]. 干旱区地理, 2021, 44(5): 1384-1395.
SUN Lirong,ZHOU Dongmei,CEN Guozhang,MA Jing,DANG Rui,NI Fan,ZHANG Jun. Landscape ecological risk assessment and driving factors of the Shule River Basin based on the geographic detector model[J]. Arid Land Geography, 2021, 44(5): 1384-1395.
表1
景观格局指数公式"
景观格局指数 | 公式 | 意义 |
---|---|---|
斑块个数(NP) | | ni为景观要素i的斑块指数,反映景观中某一斑块类型的斑块总个数。其值越大表明景观破碎度越高。 |
聚集度指数(AI) | | gii和maxgii为基于单倍法的斑块类型i各像元之间节点数和最大节点数。AI约接近0时,斑块类型破碎度最大,凝聚程度越低;AI约接近100时,斑块类型越紧实。 |
最大斑块指数(LPI) | | max为景观中最大斑块的面积(km2);A为景观总面积(km2);an为第n个斑块。LPI反映最大斑块在景观中的优势比例。 |
景观形状指数(LSI) | | Ei为第i种土地利用类型斑块边界的总长度(km),反映整体景观的形状复杂程度。LSI越接近于1,整体景观越简单;LSI越大,则斑块形状越不规则,越离散。 |
香农多样性指数(SHDI) | | Pi为每一种斑块类型所占景观总面积的比例(%);n为景观中斑块类型的总数。SHDI反映斑块类型多样性,多样性指数越高表明景观中斑块类型越多。 |
香农均匀度指数(SHEI) | | m为土地利用类型数;pi为每一种斑块类型所占景观总面积的比例(%)。SHEI值较小时,反映景观受一种或几种优势斑块类型所支配;当SHEI趋于1时,说明景观中没有明显的优势类型且斑块类型在景观中均匀分布。 |
蔓延度指数(CONTAG) | | m为土地利用类型数;n为斑块数目;pij为随机选择的2个相邻栅格细胞是属于i和j的概率;CONTAG反映景观中不同类型斑块的团聚程度或延展趋势。 |
表2
景观生态风险指数公式"
指数名称 | 公式 | 意义 |
---|---|---|
景观生态风险指数(ERk) | | ERk为景观生态风险评价k的景观风险指数,值越大表示该评价单元的生态风险值越高,反之,值越低;Aki为景观生态风险评价单元k中第i类景观的面积(km2);Ak为评价单元k的总面积(km2);LLi为第i类景观的生态损失指数;m为景观类型的数量。 |
景观损失度指数(LLi) | | LLi为景观损失度指数;Ci为破碎度指数;Ui为干扰度指数。 |
景观破碎度指数(Ci) | | Ci为破碎度指数;ni为景观i的斑块数;Ai为景观i的总面积(km2)。 |
景观分离度指数(Fi) | | Fi为景观分离度指数;A为景观总面积(km2);Ai为景观i的总面积(km2);ni为景观i的斑块数。 |
景观分维数(Di) | | Di为景观分维数;Qi为景观i的周长(km);Ai为景观i的总面积(km2)。 |
景观干扰度指数(Ui) | | Ui为景观干扰度指数;Ci为破碎度指数;Fi为景观分离度指数;Di为景观分维数;a、b、c分别为景观破碎度、分离度和分维数权重,对其赋值为0.5、0.3、0.2。 |
表3
2000—2018年疏勒河流域斑块类型景观格局指数统计"
景观格局指数 | 年份 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 |
---|---|---|---|---|---|---|---|
斑块个数(NP) | 2000 | 127 | 273 | 1736 | 138 | 85 | 281 |
2010 | 130 | 276 | 1775 | 146 | 84 | 293 | |
2018 | 126 | 261 | 1770 | 159 | 164 | 331 | |
最大斑块指数(LPI) | 2000 | 0.3014 | 0.0916 | 2.6584 | 0.1058 | 0.0373 | 78.1309 |
2010 | 0.3370 | 0.0916 | 2.6602 | 0.1058 | 0.0373 | 77.7646 | |
2018 | 0.4360 | 0.0810 | 2.7369 | 0.0997 | 0.0391 | 77.3710 | |
景观形状指数(LSI) | 2000 | 16.9571 | 17.549 | 58.4394 | 14.5510 | 10.4194 | 30.4054 |
2010 | 17.6835 | 18.0000 | 58.9516 | 14.7000 | 10.3548 | 30.7383 | |
2018 | 17.4118 | 17.6863 | 58.4410 | 15.2500 | 12.9730 | 31.1059 | |
聚集度指数(AI) | 2000 | 52.1012 | 30.1902 | 59.7878 | 41.2909 | 31.6159 | 90.1088 |
2010 | 56.1398 | 29.1667 | 59.5156 | 40.9483 | 32.4009 | 89.9689 | |
2018 | 59.8792 | 30.5306 | 59.6768 | 41.0032 | 31.5301 | 89.8246 |
表5
2000—2018年疏勒河流域景观生态风险等级面积及比例统计"
景观生态 风险等级 | 2000—2010年 | 2010—2018年 | 2000—2018年 | |||||
---|---|---|---|---|---|---|---|---|
面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | |||
低 | -23.51 | -0.02 | 1154.71 | 1.03 | 1131.19 | 1.01 | ||
较低 | -37.16 | -0.03 | 1071.26 | 0.95 | 1034.10 | 0.92 | ||
中 | -5.03 | -0.01 | 2231.55 | 1.99 | 2226.52 | 1.98 | ||
较高 | -482.94 | -0.43 | -3230.81 | -2.88 | -3713.75 | -3.30 | ||
高 | 545.51 | 0.49 | -1228.21 | -1.09 | -682.71 | -0.61 |
表6
2000—2018年疏勒河流域景观生态风险驱动因子交互影响"
2000年 | 2010年 | 2018年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
交互项 | 交互值 | 交互项 | 交互值 | 交互项 | 交互值 | 交互项 | 交互值 | 交互项 | 交互值 | 交互项 | 交互值 | ||
X1∩X2 | 0.2474 | X3∩X5 | 0.3824 | X1∩X2 | 0.2421 | X3∩X5 | 0.3576 | X1∩X2 | 0.2554 | X3∩X5 | 0.2962 | ||
X1∩X3 | 0.3492 | X3∩X6 | 0.3247* | X1∩X3 | 0.3327 | X3∩X6 | 0.3221* | X1∩X3 | 0.3163 | X3∩X6 | 0.2993 | ||
X1∩X4 | 0.3760 | X3∩X7 | 0.2074* | X1∩X4 | 0.3692 | X3∩X7 | 0.2072* | X1∩X4 | 0.4459 | X3∩X7 | 0.2621* | ||
X1∩X5 | 0.2479 | X3∩X8 | 0.6848 | X1∩X5 | 0.2334 | X3∩X8 | 0.7024 | X1∩X5 | 0.2909 | X3∩X8 | 0.5011 | ||
X1∩X6 | 0.2364 | X4∩X5 | 0.3960 | X1∩X6 | 0.2327 | X4∩X5 | 0.3769 | X1∩X6 | 0.3028 | X4∩X5 | 0.4315 | ||
X1∩X7 | 0.2092* | X4∩X6 | 0.3791* | X1∩X7 | 0.2082* | X4∩X6 | 0.3661* | X1∩X7 | 0.2713* | X4∩X6 | 0.4248 | ||
X1∩X8 | 0.6456 | X4∩X7 | 0.2770* | X1∩X8 | 0.6934 | X4∩X7 | 0.2974* | X1∩X8 | 0.5239 | X4∩X7 | 0.2735 | ||
X2∩X3 | 0.2423 | X4∩X8 | 0.6449 | X2∩X3 | 0.2464 | X4∩X8 | 0.6491 | X2∩X3 | 0.2613 | X4∩X8 | 0.5757 | ||
X2∩X4 | 0.3166 | X5∩X6 | 0.2684 | X2∩X4 | 0.3249 | X5∩X6 | 0.2513 | X2∩X4 | 0.3276 | X5∩X6 | 0.2825 | ||
X2∩X5 | 0.2680 | X5∩X7 | 0.2319* | X2∩X5 | 0.2535 | X5∩X7 | 0.2126* | X2∩X5 | 0.2499 | X5∩X7 | 0.2686* | ||
X2∩X6 | 0.2352* | X5∩X8 | 0.6845 | X2∩X6 | 0.2227* | X5∩X8 | 0.7178 | X2∩X6 | 0.2489 | X5∩X8 | 0.5178 | ||
X2∩X7 | 0.1136* | X6∩X7 | 0.1504* | X2∩X7 | 0.1064 | X6∩X7 | 0.1250* | X2∩X7 | 0.1663* | X6∩X7 | 0.2014* | ||
X2∩X8 | 0.6507 | X6∩X8 | 0.6665 | X2∩X8 | 0.6794 | X6∩X8 | 0.6972 | X2∩X8 | 0.4608 | X6∩X8 | 0.5333 | ||
X3∩X4 | 0.4148 | X7∩X8 | 0.5998 | X3∩X4 | 0.4221 | X7∩X8 | 0.6337 | X3∩X4 | 0.4325 | X7∩X8 | 0.4483* |
[1] |
Cao Q, Zhang X, Lei D, et al. Multi-scenario simulation of landscape ecological risk probability to facilitate different decision-making preferences[J]. Journal of Cleaner Production, 2019, 227:325-335.
doi: 10.1016/j.jclepro.2019.03.125 |
[2] | Turner M G. Landscape ecology: The effect of pattern on process[J]. Annual Review of Ecology & Systematics, 2003, 20(1):171-197. |
[3] | 谢小平, 陈芝聪, 王芳, 等. 基于景观格局的太湖流域生态风险评估[J]. 应用生态学报, 2017, 28(10):3369-3377. |
[ Xie Xiaoping, Chen Zhicong, Wang Fang, et al. Ecological risk assessment of Taihu Lake Basin based on landscape pattern[J]. Chinese Journal of Applied Ecology, 2017, 28(10):3369-3377. ] | |
[4] | 卢远, 苏文静, 华璀, 等. 左江上游流域景观生态风险评价[J]. 热带地理, 2010(5):38-44. |
[ Lu Yuan, Su Wenjing, Hua Cui, et al. Landscape ecological risk assessment for upper Zuojiang River Basin[J]. Tropical Geography, 2010(5):38-44. ] | |
[5] | 江恩慧, 王远见, 田世民, 等. 流域系统科学初探[J]. 水利学报, 2020, 51(9):1026-1037. |
[ Jiang Enhui, Wang Yuanjian, Tian Shiming, et al. Exploration of watershed system science[J]. Journal of Hydraulic Engineering, 2020, 51(9):1026-1037. ] | |
[6] |
曹祺文, 张曦文, 马洪坤, 等. 景观生态风险研究进展及基于生态系统服务的评价框架: ESRISK[J]. 地理学报, 2018, 73(5):843-855.
doi: 10.11821/dlxb201805005 |
[ Cao Qiwen, Zhang Xiwen, Ma Hongkun, et al. Review of landscape ecological risk and an assessment framework based on ecological services: ESRISK[J]. Acta Geographica Sinica, 2018, 73(5):843-855. ]
doi: 10.11821/dlxb201805005 |
|
[7] |
Wang H, Liu X M, Zhao C Y, et al. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National Nature Reserve in Gansu Province, China[J]. Ecological Indicators, 2021, 124:107454, doi: 10.1016/j.ecolind.2021.107454.
doi: 10.1016/j.ecolind.2021.107454 |
[8] |
Vinod K, Anket S, Shevita P, et al. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India[J]. International Journal of Sediment Research, 2020, 35(5):516-526.
doi: 10.1016/j.ijsrc.2020.03.012 |
[9] |
陈峰, 李红波, 张安录. 基于生态系统服务的中国陆地生态风险评价[J]. 地理学报, 2019, 74(3):432-445.
doi: 10.11821/dlxb201903003 |
[ Chen Feng, Li Hongbo, Zhang Anlu. Ecological risk assessment based on terrestrial ecosystem services in China[J]. Acta Geographica Sinica, 2019, 74(3):432-445. ]
doi: 10.11821/dlxb201903003 |
|
[10] | 张月, 张飞, 周梅, 等. 干旱区内陆艾比湖区域景观生态风险评价及时空分异[J]. 应用生态学报, 2016, 27(1):233-242. |
[ Zhang Yue, Zhang Fei, Zhou Mei, et al. Landscape ecological risk assessment and its spatio-temporal variations in Ebinur Lake region of inland arid area[J]. Chinese Journal of Applied Ecology, 2016, 27(1):233-242. ] | |
[11] |
Xing L, Hu M S, Wang Y. Integrating ecosystem services value and uncertainty into regional ecological risk assessment: A case study of Hubei Province, Central China[J]. Science of the Total Environment, 2020, 740:140126, doi: 10.1016/j.scitotenv.2020.140126.
doi: 10.1016/j.scitotenv.2020.140126 |
[12] | 马胜, 梁小英, 刘迪, 等. 生态脆弱区多尺度景观生态风险评价--以陕西省米脂县高渠乡为例[J]. 生态学杂志, 2018, 37(10):3171-3178. |
[ Ma Sheng, Liang Xiaoying, Liu Di, et al. Multi-scale landscape ecological risk assessment in ecologically fragile regions: A case study in Gaoqu Town in Mizhi County, Shaanxi Province[J]. Chinese Journal of Ecology, 2018, 37(10):3171-3178. ] | |
[13] |
Arenas-Sánchez A, Rico A, Rivas-Tabares D, et al. Identification of contaminants of concern in the upper Tagus River Basin (central Spain). Part 2: Spatio-temporal analysis and ecological risk assessment[J]. Science of the Total Environment, 2019, 667:222-233.
doi: 10.1016/j.scitotenv.2019.02.286 |
[14] |
Ayre K K, Landis W G. A Bayesian approach to landscape ecological risk assessment applied to the Upper Grande Ronde Watershed, Oregon[J]. Human and Ecological Risk Assessment: An International Journal, 2012, 18(5):946-970.
doi: 10.1080/10807039.2012.707925 |
[15] | Chow T E, Gaines K F, Hodgson M E. et al. Habitat and exposure modelling for ecological risk assessment: A case study for the raccoon on the Savannah River site[J]. Ecological Modelling, 2005, 189(1-2):151-167. |
[16] |
彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望[J]. 地理学报, 2015, 70(4):664-677.
doi: 10.11821/dlxb201504013 |
[ Peng Jian, Dang Weixiong, Liu Yanxu, et al. Review on landscape ecological risk assessment[J]. Acta Geographica Sinica, 2015, 70(4):664-677. ]
doi: 10.11821/dlxb201504013 |
|
[17] |
Yang T, Zhang Q, Wan X B, et al. Comprehensive ecological risk assessment for semi-arid basin based on conceptual model of risk response and improved TOPSIS model: A case study of Wei River Basin, China[J]. Science of the Total Environment, 2020, 719:137502, doi: 10.1016/j.scitotenv.2020.137502.
doi: 10.1016/j.scitotenv.2020.137502 |
[18] |
李青圃, 张正栋, 万露文, 等. 基于景观生态风险评价的宁江流域景观格局优化[J]. 地理学报, 2019, 74(7):1420-1437.
doi: 10.11821/dlxb201907011 |
[ Li Qingpu, Zhang Zhengdong, Wan Luwen, et al. Landscape pattern optimization in Ningjiang River Basin based on landscape ecological risk assessment[J]. Acta Geographica Sinica, 2019, 74(7):1420-1437. ]
doi: 10.11821/dlxb201907011 |
|
[19] | 郑杰, 王志杰, 喻理飞, 等. 基于景观格局的草海流域生态风险评价[J]. 环境化学, 2019, 38(4):784-792. |
[ Zheng Jie, Wang Zhijie, Yu Lifei, et al. Ecological risk assessment of Caohai Watershed based on landscape pattern[J]. Environmental Chemistry, 2019, 38(4):784-792. ] | |
[20] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134. ]
doi: 10.11821/dlxb201701010 |
|
[21] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.
doi: 10.1080/13658810802443457 |
[22] |
Tian F, Liu L Z, Yang J H, et al. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities[J]. Ecological Indicators, 2021, 125:107479, doi: 10.1016/j.ecolind.2021.107479.
doi: 10.1016/j.ecolind.2021.107479 |
[23] | 罗瑶, 彭文甫, 董永波, 等. 基于地理探测器下的川西高原地表温度空间格局及影响因子分析--以西昌市为例[J]. 干旱区地理, 2020, 43(3):738-749. |
[ Luo Yao, Peng Wenfu, Dong Yongbo, et al. Geographical exploration of the spatial pattern of the surface temperature and its influencing factors in western Sichuan Plateau: A case of Xichang City[J]. Arid Land Geography, 2020, 43(3):738-749. ] | |
[24] |
Xu L, Du H R, Zhang X L. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method[J]. Journal of Cleaner Production, 2021, 287:125169, doi: 10.1016/j.jclepro.2020.125169.
doi: 10.1016/j.jclepro.2020.125169 |
[25] | 潘洪义, 黄佩, 徐婕. 基于地理探测器的岷江中下游地区植被NPP时空格局演变及其驱动力研究[J]. 生态学报, 2019, 39(20):7621-7631. |
[ Pan Hongyi, Huang Pei, Xu Jie. The spatial and temporal pattern evolution of vegetation NPP and its driving forces in middle-lower areas of the Min River based on geographical detector analyses[J]. Acta Ecologica Sinica, 2019, 39(20):7621-7631. ] | |
[26] |
Yuan L H, Chen X Q, Wang X Y, et al. Spatial associations between NDVI and environmental factors in the Heihe River Basin[J]. Journal of Geographical Sciences, 2019, 29(9):1548-1564.
doi: 10.1007/s11442-019-1676-0 |
[27] | 张思源, 聂莹, 张海燕, 等. 基于地理探测器的内蒙古植被NDVI时空变化与驱动力分析[J]. 草地学报, 2020, 28(5):1460-1472. |
[ Zhang Siyuan, Nie Ying, Zhang Haiyan, et al. Spatiotemporal variation of vegetation NDVI and its driving forces in Inner Mongolia based on geodetector[J]. Acta Grasslandica, 2020, 28(5):1460-1472. ] | |
[28] | 孙道亮, 洪步庭, 任平. 都江堰市农村居民点时空演变与驱动因素研究[J]. 长江流域资源与环境, 2020, 29(10):2167-2176. |
[ Sun Daoliang, Hong Buting, Ren Ping. Study on the spatiotemporal evolution and driving factors of rural settlements in Dujiangyan City[J]. Resources and Environment in the Yangtze Basin, 2020, 29(10):2167-2176. ] | |
[29] |
Xie Z X, Qin Y C, Li Y, et al. Spatial and temporal differentiation of COVID-19 epidemic spread in mainland China and its influencing factors[J]. Science of the Total Environment, 2020, 744:140929, doi: 10.1016/j.scitotenv.2020.140929.
doi: 10.1016/j.scitotenv.2020.140929 |
[30] | 王琳, 赵俊三. 城市群新冠疫情时空分布格局与分异机制的地理探测[J]. 生态学报, 2020, 40(19):6788-6800. |
[ Wang Lin, Zhao Junsan. Spatiotemporal distribution pattern of the COVID-19 epidemic and geographical detection[J]. Acta Ecologica Sinica, 2020, 40(19):6788-6800. ] | |
[31] | 潘竟虎, 胡艳兴. 疏勒河中下游近35年土地利用与景观格局动态[J]. 土壤, 2014, 46(4):742-748. |
[ Pan Jinghu, Hu Yanxing. Dynamic change of land use & landscape pattern in middle and lower reaches of Shule River during recent 35 years[J]. Soils, 2014, 46(4):742-748. ] | |
[32] | 吴金华, 房世峰, 刘宝军, 等. 乌裕尔河-双阳河流域湿地景观格局演变及其驱动机制[J]. 生态学报, 2020, 40(13):4279-4290. |
[ Wu Jinhua, Fang Shifeng, Liu Baojun, et al. Landscape pattern evolution of wetland and its driving mechanism in Wuyuer-Shuangyang River Basin[J]. Acta Ecologica Sinica, 2020, 40(13):4279-4290. ] | |
[33] | 贾艳艳, 唐晓岚, 刘振威, 等. 1995-2016年长江沿岸芜湖区段景观格局梯度分析[J]. 地域研究与开发, 2020, 39(4):115-121. |
[ Jia Yanyan, Tang Xiaolan, Liu Zhenwei, et al. Gradient analysis of landscape pattern in Wuhu Section along the Yangtze River from 1995 to 2016[J]. Areal Research and Development, 2020, 39(4):115-121. ] | |
[34] | 徐启渝, 王鹏, 王涛, 等. 土地利用结构与景观格局对鄱阳湖流域赣江水质的影响[J]. 湖泊科学, 2020, 32(4):1008-1019. |
[ Xu Qiyu, Wang Peng, Wang Tao, et al. Investigation of the impacts of land use structure and landscape pattern on water quality in the Ganjiang River, Poyang Basin[J]. Journal of Lake Science, 2020, 32(4):1008-1019. ] | |
[35] | 秦艳丽, 时鹏, 何文虹, 等. 西安市城市化对景观格局及生态系统服务价值的影响[J]. 生态学报, 2020, 40(22):1-12. |
[ Qin Yanli, Shi Peng, He Wenhong, et al. Influence of urbanization on landscape pattern and ecosystem service value in Xi’an City[J]. Acta Ecologica Sinica, 2020, 40(22):1-12. ] | |
[36] | 娄妮, 王志杰, 何嵩涛. 基于景观格局的阿哈湖国家湿地公园景观生态风险评价[J]. 水土保持研究, 2020, 27(1):233-239. |
[ Lou Ni, Wang Zhijie, He Songtao. Assessment on ecological risk of Aha Lake National Wetland Park based on landscape pattern[J]. Research of Soil and Water Conservation, 2020, 27(1):233-239. ] | |
[37] | 王涛, 肖彩霞, 刘娇, 等. 杞麓湖流域景观时空格局演变及其对景观生态风险的影响[J]. 水土保持研究, 2019, 26(6):219-225. |
[ Wang Tao, Xiao Caixia, Liu Jiao, et al. Evolution of spatial and temporal patterns of landscape and its impact on landscape ecological risk in Qilu Lake Basin[J]. Research of Soil and Water Conservation, 2019, 26(6):219-225. ] | |
[38] |
Zhang C Q, Dong B, Liu L P, et al. Study on ecological risk assessment for land-use of wetland based on different scale[J]. Journal of the Indian Society of Remote Sensing, 2015, 44(5):1-8.
doi: 10.1007/s12524-015-0448-2 |
[39] | 陈鹏, 傅世锋, 文超祥, 等. 1989-2010年间厦门湾滨海湿地人为干扰影响评价及景观响应[J]. 应用海洋学学报, 2014, 33(2):167-174. |
[ Chen Peng, Fu Shifeng, Wen Chaoxiang, et al. Assessment of the impact on coastal wetland of Xiamen Bay and response of landscape pattern from human disturbance from 1989 to 2010[J]. Journal of Applied Oceanography, 2014, 33(2):167-174. ] | |
[40] | 孙永光, 赵冬至, 吴涛, 等. 河口湿地人为干扰度时空动态及景观响应--以大洋河口为例[J]. 生态学报, 2012, 32(12):3645-3655. |
[ Sun Yongguang, Zhao Dongzhi, Wu Tao, et al. Temporal and spatial dynamic changes and landscape pattern response of hemeroby in Dayang estuary of Liaoning Province, China[J]. Acta Ecologica Sinica, 2012, 32(12):3645-3655. ] | |
[41] | 潘竟虎, 刘晓. 疏勒河流域景观生态风险评价与生态安全格局优化构建[J]. 生态学杂志, 2016, 35(3):791-799. |
[ Pan Jinghu, Liu Xiao. Landscape ecological risk assessment and landscape security pattern optimization in Shule River Basin[J]. Journal of Ecology, 2016, 35(3):791-799. ] | |
[42] | 康紫薇, 张正勇, 位宏, 等. 基于土地利用变化的玛纳斯河流域景观生态风险评价[J]. 生态学报, 2020, 40(18):6472-6485. |
[ Kang Ziwei, Zhang Zhengyong, Wei Hong, et al. Landscape ecological risk assessment in Manas River Basin based on land use change[J]. Acta Ecologica Sinica, 2020, 40(18):6472-6485. ] | |
[43] | 位宏, 徐丽萍, 李晓蕾, 等. 博斯腾湖流域景观生态风险评价与时空变化[J]. 环境科学与技术, 2018, 41(增刊1):345-351. |
[ Wei Hong, Xu Liping, Li Xiaolei, et al. Landscape ecological risk assessment and its spatiotemporal changes of the Bosten Lake Basin[J]. Environmental Science & Technology, 2018, 41(Suppl.1):345-351. ] | |
[44] | 巩杰, 谢余初, 赵彩霞, 等. 甘肃白龙江流域景观生态风险评价及其时空分异[J]. 中国环境科学, 2014, 34(8):2153-2160. |
[ Gong Jie, Xie Yuchu, Zhao Caixia, et al. Landscape ecological risk assessment and its spatiotemporal variation of Bailong Watershed, Gansu[J]. China Environmental Science, 2014, 34(8):2153-2160. ] | |
[45] | 刘世梁, 刘琦, 张兆苓, 等. 云南省红河流域景观生态风险及驱动力分析[J]. 生态学报, 2014, 34(13):3728-3734. |
[ Liu Shiliang, Liu Qi, Zhang Zhaoling, et al. Landscape ecological risk and driving force analysis in Red River Basin[J]. Acta Ecologica Sinica, 2014, 34(13):3728-3734. ] | |
[46] | 黄木易, 何翔. 近20年来巢湖流域景观生态风险评估与时空演化机制[J]. 湖泊科学, 2016, 28(4):785-793. |
[ Huang Muyi, He Xiang. Landscape ecological risk assessment and its mechanism in Chaohu Basin during the past almost 20 years[J]. Lake Science, 2016, 28(4):785-793. ] | |
[47] | 吕乐婷, 张杰, 孙才志, 等. 基于土地利用变化的细河流域景观生态风险评估[J]. 生态学报, 2018, 38(16):5952-5960. |
[ Lü Leting, Zhang Jie, Sun Caizhi, et al. Landscape ecological risk assessment of Xi River Basin based on land-use change[J]. Acta Ecologica Sinica, 2018, 38(16):5952-5960. ] | |
[48] | 张学斌, 石培基, 罗君, 等. 基于景观格局的干旱内陆河流域生态风险分析--以石羊河流域为例[J]. 自然资源学报, 2014, 29(3):410-419. |
[ Zhang Xuebin, Shi Peiji, Luo Jun, et al. The ecological risk analysis of arid inland river basin at the landscape scale: A case study on Shiyang River Basin[J]. Journal of Natural Resources, 2014, 29(3):410-419. ] | |
[49] | 奚世军. 喀斯特山区流域综合生态风险评估及其驱动力分析--以贵州乌江流域为例[D]. 贵阳: 贵州师范大学, 2020. |
[ Xi Shijun. Comprehensive ecological risk assessment and driving force analysis of karst mountain basin: A case study of Wujiang River Basin, Guizhou Province[D]. Guiyang: Guizhou Normal University, 2020. ] | |
[50] | 郑续, 魏乐民, 郭建军, 等. 基于地理探测器的干旱区内陆河流域产水量驱动力分析--以疏勒河流域为例[J]. 干旱区地理, 2020, 43(6):1477-1485. |
[ Zheng Xu, Wei Lemin, Guo Jianjun, et al. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: A case of the Shule River[J]. Arid Land Geography, 2020, 43(6):1477-1485. ] |
[1] | 蔺阿荣, 周冬梅, 马静, 朱小燕, 江晶, 张军. 基于RWEQ模型的疏勒河流域防风固沙功能价值评估[J]. 干旱区地理, 2024, 47(1): 58-67. |
[2] | 刘焕才,史书琦,李曼,张艳芳,韩丽. 疏勒河流域中游地区玉米性状及单产的影响因子研究[J]. 干旱区地理, 2023, 46(9): 1453-1466. |
[3] | 杨雨, 宋福铁, 张杰. 基于地理探测器的中国金融网络空间结构特征及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1524-1535. |
[4] | 李建辉, 陈琳, 党争. 黄河流域爱国主义教育基地空间格局及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1536-1544. |
[5] | 张昊, 韩增林, 乔国荣, 王辉, 王宏业, 段冶. 黄河流域城市间旅游经济联系格局及影响因素研究[J]. 干旱区地理, 2023, 46(8): 1344-1354. |
[6] | 康利刚, 曹生奎, 曹广超, 严莉, 陈链璇, 李文斌, 赵浩然. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[7] | 穆佳薇, 乔保荣, 余国新. 新疆塔里木河流域县域农业低碳生产率时空格局及影响效应研究[J]. 干旱区地理, 2023, 46(6): 968-981. |
[8] | 杨静, 周冬梅, 马静, 朱小燕, 金银丽, 周凡, 张军. 疏勒河流域农业水土资源时空匹配特征分析[J]. 干旱区地理, 2023, 46(6): 982-992. |
[9] | 孔德明, 郝丽莎, 夏四友, 李红波. 粮食单产视角下中国北方农牧交错带粮食安全研究[J]. 干旱区地理, 2023, 46(5): 782-792. |
[10] | 罗嘉艳, 张靖, 徐梦冉, 莫宇, 同丽嘎. 浑善达克沙地植被变化定量归因及多情景预测[J]. 干旱区地理, 2023, 46(4): 614-624. |
[11] | 朱磊, 李燕楠, 胡静, 田小波, 徐佳慧, 卿琪. 中国研学实践基地空间格局的多尺度特征及影响机理研究[J]. 干旱区地理, 2023, 46(4): 625-635. |
[12] | 杨玉欢,贺建雄,张新红,芮旸. 中国农文旅耦合协调发展空间分异特征及影响肌理[J]. 干旱区地理, 2023, 46(3): 448-459. |
[13] | 周凡,周冬梅,金银丽,马静,杨静,朱小燕,张军. 疏勒河流域生态系统服务供需空间匹配特征[J]. 干旱区地理, 2023, 46(3): 471-480. |
[14] | 程静,王鹏,陈红翔,韩永贵. 渭河流域生境质量时空演变及其地形梯度效应与影响因素[J]. 干旱区地理, 2023, 46(3): 481-491. |
[15] | 鹿晨昱,黄萍,张彤,刘小莞,成薇. 甘肃省绿色发展效率时空演化与驱动因素研究[J]. 干旱区地理, 2023, 46(2): 305-315. |
|