收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (6): 982-992.doi: 10.12118/j.issn.1000-6060.2022.474

• 土地利用与农业发展 • 上一篇    下一篇

疏勒河流域农业水土资源时空匹配特征分析

杨静1(),周冬梅1,马静1,朱小燕1,金银丽1,周凡2,张军1,3()   

  1. 1.甘肃农业大学资源与环境学院,甘肃 兰州 730070
    2.甘肃农业大学管理学院,甘肃 兰州 730070
    3.甘肃省节水农业工程技术研究中心,甘肃 兰州 730070
  • 收稿日期:2022-09-20 修回日期:2022-11-28 出版日期:2023-06-25 发布日期:2023-07-24
  • 通讯作者: 张军(1977-),男,教授,主要从事生态系统服务与水土资源利用等方面的研究. E-mail: zhangjun@gsau.edu.cn
  • 作者简介:杨静(1993-),女,硕士研究生,主要从事农业水土资源匹配等方面的研究. E-mail: 1664045866@qq.com
  • 基金资助:
    甘肃省高等学校创新基金(2021A-061);甘肃省自然科学基金(21JR7RA811);甘肃省林业和草原科技创新计划(LCKJCX202205);甘肃省社科规划项目(2022YB069)

Spatial and temporal matching characteristics of agricultural land and water resources in the Shule River Basin

YANG Jing1(),ZHOU Dongmei1,MA Jing1,ZHU Xiaoyan1,JIN Yinli1,ZHOU Fan2,ZHANG Jun1,3()   

  1. 1. College of Resources and Environment, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. College of Management, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3. Research Center for Water-saving Agriculture in Gansu Province, Lanzhou 730070, Gansu, China
  • Received:2022-09-20 Revised:2022-11-28 Online:2023-06-25 Published:2023-07-24

摘要:

水土资源是农业生产最重要的基础性资源,其空间的合理有效配置有利于资源的充分利用和区域可持续发展。以疏勒河流域为研究对象,基于水足迹理论核算流域农业生产水足迹变化规律,采用基尼系数和空间错配模型定量评估研究区2000—2020年农业水土资源的时空匹配动态趋势及其敏感性。结果表明:(1) 2000—2020年疏勒河流域农业作物生产水足迹和作物种植面积总体呈波动下降趋势,作物生产水足迹峰值出现在2007、2018年,作物种植面积峰值出现在2009、2018年;流域年均蓝水足迹贡献率达90.9%,且与绿水足迹呈互补关系,表明蓝水是疏勒河流域农业用水的主要来源。(2) 农业水土资源的空间匹配程度逐渐提高,总体处于较匹配的状态;蓝、绿水足迹与作物种植面积的空间不匹配程度逐渐得到改善,空间分布中均呈现出中部高、四周低的特点。(3) 作物种植面积对作物生产水足迹变化呈中、高度敏感性的地区数量不断增加趋势。

关键词: 水足迹, 水土匹配, 敏感性分析, 疏勒河流域

Abstract:

As important resources for agricultural production, the effective spatial allocation of land and water resources is conducive to the full utilization of resources and sustainable regional development. In this study, we selected the Shule River Basin, northwest China as the research object. On the basis of the water footprint theory to account for the changes in the water footprint of agricultural production in the Shule River Basin, the Gini coefficient and the spatial mismatch model were used to quantitatively assess the dynamic trends of the spatial and temporal matching of agricultural land and water resources in the study area during 2000—2020 and their sensitivity. Our results showed the following: (1) The agricultural water footprint and crop planting area in the Shule River Basin showed a decreasing trend during 2000—2020. The peak of crop production water footprint appeared in 2007 and 2018, and the peak of crop planting area appeared in 2009 and 2018. The annual contribution rate of blue water footprint is 90.9%, which is complementary to green water footprint, indicating that blue water is the main source of agricultural water in the Shule River Basin. (2) The spatial matching degree of agricultural water and soil resources is gradually improved, and it is generally in a better matching state. The spatial mismatch between blue and green water footprint and crop planting area was gradually improved, and the spatial distribution showed the characteristics of high in the middle and low in the periphery. (3) The number of areas with moderate or high sensitivity to crop production footprint was increasing.

Key words: water footprint, land and water matching, sensitivity analysis, Shule River Basin