| [1] |
车彦军, 陈丽花, 谷来磊, 等. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265.
doi: 10.7522/j.issn.1000-0240.2023.0096
|
|
[Che Yanjun, Chen Lihua, Gu Lailei, et al. Evolution of glacial lakes and glacier mass loss in Ulugh Muztagh area of eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1254-1265.]
doi: 10.7522/j.issn.1000-0240.2023.0096
|
| [2] |
Bhattacharya A, Bolch T, Mukherjee K, et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s[J]. Nature Communications, 2021, 12(1): 4133, doi: 10.1038/s41467-021-24180-y.
|
| [3] |
Reijmer C H, Knap W H, Oerlemans J, et al. The surface albedo of the Vatnajökull Ice Cap, Iceland: A comparison between satellite-derived and ground-based measurements[J]. Boundary-layer Meteorology, 1999, 92: 123-143.
|
| [4] |
岳晓英, 李忠勤, 王飞腾, 等. 天山乌鲁木齐河源1号冰川消融期反照率特征[J]. 冰川冻土, 2021, 43(5): 1412-1423.
doi: 10.7522/j.issn.1000-0240.2021.0097
|
|
[Yue Xiaoying, Li Zhongqin, Wang Feiteng, et al. The characteristics of surface albedo on the Urumqi Glacier No.1 during the ablation season in eastern Tien Shan[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1412-1423.]
doi: 10.7522/j.issn.1000-0240.2021.0097
|
| [5] |
Oerlemans J, Knap W H. A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland[J]. Journal of Glaciology, 1998, 44(147): 231-238.
|
| [6] |
廖虹怡, 柳林. 利用Landsat8分析冬克玛底冰川表面反照率时空变化[J]. 测绘地理信息, 2024, 49(3): 19-24.
|
|
[Liao Hongyi, Liu Lin. Temporal and spatial variation of surface albedo of Dongkemadi Glacier based on Landsat8[J]. Journal of Geomatics, 2024, 49(3): 19-24.]
|
| [7] |
Yang W, Guo X F, Yao T D, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D14116, doi: 10.1029/2010JD015183.
|
| [8] |
Koelemeijer R, Oerlemans J, Tjemkes S. Surface reflectance of Hintereisferner, Austria, from Landsat 5 TM imagery[J]. Annals of Glaciology, 1993, 17: 17-22.
|
| [9] |
王杰, 何晓波, 叶柏生, 等. 唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1): 21-28.
|
|
[Wang Jie, He Xiaobo, Ye Baisheng, et al. Variations of albedo on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 21-28.]
|
| [10] |
王俊瑶, 怀保娟, 王叶堂, 等. 基于MOD10A1的祁连山黑河流域典型冰川反照率时空变化研究[J]. 干旱区研究, 2020, 37(6): 1396-1405.
|
|
[Wang Junyao, Huai Baojuan, Wang Yetang, et al. Spatiotemporal variation of albedo of four representative glaciers in the Heihe River Basin based on multi-source data[J]. Arid Zone Research, 2020, 37(6): 1396-1405.]
|
| [11] |
陈满, 陈亚宁, 方功焕, 等. 昆仑山北坡冰川湖变化及其溃决风险评估[J]. 干旱区地理, 2024, 47(10): 1628-1639.
doi: 10.12118/j.issn.1000-6060.2024.178
|
|
[Chen Man, Chen Yaning, Fang Gonghuan, et al. Changes in glacial lakes on the northern slope of Kunlun Mountains and assessment of their outburst risks[J]. Arid Land Geography, 2024, 47(10): 1628-1639.]
doi: 10.12118/j.issn.1000-6060.2024.178
|
| [12] |
郭万钦, 刘时银, 许君利, 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012, 34(4): 765-774.
|
|
[Guo Wanqin, Liu Shiyin, Xu Junli, et al. Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag Range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774.]
|
| [13] |
毛瑞娟, 吴红波, 贺建桥, 等. 昆仑山木孜塔格冰川反照率变化特征及其与粉尘的关系[J]. 冰川冻土, 2013, 35(5): 1133-1142.
doi: 10.7522/j.issn.1000-0240.2013.0128
|
|
[Mao Ruijuan, Wu Hongbo, He Jianqiao, et al. Spatiotemporal variation of albedo of Muztagh Glacier in the Kunlun Mountains and its relation to dust[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1133-1142.]
doi: 10.7522/j.issn.1000-0240.2013.0128
|
| [14] |
Wang A, Smith J A, Wang G, et al. Late Quaternary river terrace sequences in the eastern Kunlun Range, northern Tibet: A combined record of climatic change and surface uplift[J]. Journal of Asian Earth Sciences, 2009, 34(4): 532-543.
|
| [15] |
吴佳康, 陈丽花, 车彦军, 等. 东昆仑木孜塔格峰地区水汽来源分析[J]. 干旱区研究, 2024, 41(2): 211-219.
doi: 10.13866/j.azr.2024.02.04
|
|
[Wu Jiakang, Chen Lihua, Che Yanjun, et al. Analysis of moisture feeding in the Ulugh Muztagh area of the East Kunlun Mountains[J]. Arid Zone Research, 2024, 41(2): 211-219.]
doi: 10.13866/j.azr.2024.02.04
|
| [16] |
Wang S, Li H, Zhang M, et al. Assessing gridded precipitation and air temperature products in the Ayakkum Lake, Central Asia[J]. Sustainability, 2022, 14(17): 10654, doi: 10.3390/su141710654.
|
| [17] |
毛瑞娟, 蒋熹, 郭忠明, 等. 基于TM/ETM+影像反演祁连山七一冰川反照率精度比较研究[J]. 冰川冻土, 2013, 35(2): 301-309.
doi: 10.7522/j.issn.1000-0240.2013.0036
|
|
[Mao Ruijuan, Jiang Xi, Guo Zhongming, et al. Study of the inversion precision of albedo on the Qiyi Glacier in the Qilian Mountain based on TM/ETM+ image[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 301-309.]
doi: 10.7522/j.issn.1000-0240.2013.0036
|
| [18] |
余凤臣, 王璞玉, 刘琳, 等. 萨吾尔山木斯岛冰川反照率时空变化特征研究[J]. 冰川冻土, 2022, 44(6): 1717-1729.
doi: 10.7522/j.issn.1000-0240.2022.0150
|
|
[Yu Fengchen, Wang Puyu, Liu Lin, et al. Study on the spatial and temporal variations of the surface albedo on Muz Taw Glacier, Sawir Mountains[J]. Journal of Glaciology and Geocryology, 2022, 44(6): 1717-1729.]
doi: 10.7522/j.issn.1000-0240.2022.0150
|
| [19] |
秦春, 王建. CIVCO地形校正模型的改进及其应用[J]. 遥感技术与应用, 2008(1): 82-88.
|
|
[Qin Chun, Wang Jian. Improved CIVCO topographic correction model and application[J]. Remote Sensing Technology and Application, 2008(1): 82-88.]
|
| [20] |
阿布都瓦斯提·吾拉木, 秦其明. 基于辐射模拟反演ETM+数据宽波段反照率[J]. 北京大学学报(自然科学版), 2007(4): 474-483.
|
|
[Ghulam Abduwasti, Qin Qiming. Calculation of ETM+ broadband albedos by radiative simulations[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007(4): 474-483.]
|
| [21] |
Kruse F A. Comparison of Atrem, Acorn, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder[C]// Summaries of the 13th JPL Airborne Geoscience Workshop. Pasadena, CA, USA: Jet Propulsion Laboratory, National Aeronautics and Space Administration (JPL, NASA), 2004: 1-10.
|
| [22] |
ASCF Center. FLASH user's guide[EB/OL]. [2005]. http://flash.rochester.edu.
|
| [23] |
Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2. 1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1286-1298.
|
| [24] |
Knap W H, Reijmer C H, Oerlemans J. Narrowband to broadband conversion of Landsat TM glacier albedos[J]. International Journal of Remote Sensing, 1999, 20(10): 2091-2110.
|
| [25] |
Liang S. Narrowband to broadband conversions of land surface albedo I: Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.
|
| [26] |
Naegeli K, Damm A, Huss M, et al. Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (Sentinel-2 and Landsat 8) optical data[J]. Remote Sensing, 2017, 9(2): 110, doi: 10.3390/rs9020110.
|
| [27] |
Traversa G, Fugazza D, Senese A, et al. Landsat 8 OLI broadband albedo validation in Antarctica and Greenland[J]. Remote Sensing, 2021, 13(4): 799, doi: 10.3390/rs13040799.
|
| [28] |
Greuell W, de Wildt M R. Anisotropic reflection by melting glacier ice: Measurements and parametrizations in Landsat TM bands 2 and 4[J]. Remote Sensing of Environment, 1999, 70(3): 265-277.
|
| [29] |
Boggild C E, Warren S G, Brandt R E, et al. Effects of dust and black carbon on albedo of the greenland ablation zone[C]// AGU Fall Meeting Abstracts. Washington, DC: American Geophysical Union, 2006: U22A-05.
|
| [30] |
Braithwaite R J, Raper S C B. Estimating equilibrium-line altitude (ELA) from glacier inventory data[J]. Annals of Glaciology, 2009, 50(53): 127-132.
|
| [31] |
胡安洵, 郝卫峰, 马超, 等. 大高加索山脉冰川反照率时空分布及与物质平衡的关系[J]. 地球物理学报, 2024, 67(4): 1314-1329.
|
|
[Hu Anxun, Hao Weifeng, Ma Chao, et al. The spatio-temporal distribution of the albedos and its relationship with glacier mass balance in the glaciers of the Greater Caucasus Mountains[J]. Chinese Journal of Geophysics, 2024, 67(4): 1314-1329.]
|
| [32] |
Ren S, Jia L, Menenti M, et al. Changes in glacier albedo and the driving factors in the Western Nyainqentanglha Mountains from 2001 to 2020[J]. Journal of Glaciology, 2023, 69(277): 1500-1514.
|