收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (10): 1736-1746.doi: 10.12118/j.issn.1000-6060.2024.652 cstr: 32274.14.ALG2024652

• 气候与水文 • 上一篇    下一篇

近60 a青海高原大气可降水量时空变化特征研究

伊俊兰1(), 张仙2(), 祁栋林3, 徐炜2, 辛萍萍4   

  1. 1.德令哈市气象局,青海 德令哈 817099
    2.青海省海西州气象局,青海 德令哈 817099
    3.青海省气象科学研究所,青海 西宁 810001
    4.青海省大柴旦行委气象局,青海 大柴旦行政区 816200
  • 收稿日期:2024-10-24 修回日期:2025-01-18 出版日期:2025-10-25 发布日期:2025-10-27
  • 通讯作者: 张仙(1978-),男,高级工程师,主要从事气象装备保障等方面的研究. E-mail: bw101010@163.com
  • 作者简介:伊俊兰(1988-),女,高级工程师,主要从事天气预报和气象服务等方面的研究. E-mail: Yijunlan_1017@163.com
  • 基金资助:
    海西州科技局项目(2019-ZJ-A10);青海省科技厅项目(2021-SF-141)

Spatio-temporal variations of atmospheric precipitable water in the Qinghai Plateau in the past 60 years

YI Junlan1(), ZHANG Xian2(), QI Donglin3, XU wei2, XIN Pingping4   

  1. 1. Meteorological Bureau of Delingha City, Delingha 817099, Qinghai, China
    2. Haixi Prefecture Meteorological Bureau, Delingha 817099, Qinghai, China
    3. Qinghai Institute of Meteorological Sciences, Xining 810001, Qinghai, China
    4. Qinghai Dachaidan Meteorological Bureau, Dachaidan Administrative Committee 816200, Qinghai, China
  • Received:2024-10-24 Revised:2025-01-18 Published:2025-10-25 Online:2025-10-27

摘要:

为明确青海高原大气可降水量(Precipitable water vapor,PWV)的时空演变规律及其与气候要素的关联,为区域水资源管理、生态环境保护及气候应对提供科学依据。基于1961—2020年青海省42个地面气象站资料,运用PWV与地面水汽压的经验关系式,计算分析青海高原PWV的时空分布特征。结果表明:(1) 近60 a青海高原PWV以1.0 mm·(10a)-1的速率呈明显的增加趋势,在夏季达到最大值,月际变化呈单峰型。(2) 空间分布上,PWV由西向东,由北向南增加,高值区分布在东部农业区,低值区分布在柴达木盆地,四季的最大值均在东部农业区,最低值出现在冬季。(3) 青海高原年均PWV存在明显的突变和周期变化,突变发生在1997年,6~10 a时间尺度上的周期变化较强。(4) 未来,青海高原PWV保持当前继续上升趋势的概率比较大,Hurst指数大于0.8,说明未来一段时间PWV仍将呈现持续上升的趋势。(5) 青海高原PWV与降水量和气温相关性较高,随着全球气候的不断变暖,青海高原全年可利用降水量偏多。

关键词: PWV, 时空变化, Mann-Kendall突变检验, Morlet小波分析, Hurst指数, 青海高原

Abstract:

Based on data from 42 surface meteorological stations in Qinghai Province, China from 1961 to 2020, the temporal and spatial distribution characteristics of precipitable water vapor (PWV) on the Qinghai Plateau were calculated and analyzed using an empirical formula between PWV and surface water vapor pressure. Results showed a clear increasing trend in PWV, with maximum values in summer, exhibiting a unimodal distribution. Spatially, PWV increased from west to east and from north to south, with high values in the eastern agricultural area and low values in the Qaidam Basin. Seasonal maxima were observed in the eastern agricultural area, while the minimum occurred in winter. Vertical spatial variation showed the opposite trend, generally increasing from east to west and from south to north, with the smallest values at the eastern and southern edges of the province, and the largest values at the eastern lake region, central Qaidam Basin, and northeastern Qinghai. The annual mean PWV on the Qinghai Plateau exhibited both abrupt and periodic variations, with a significant change detected in 1997. Periodic variations were most pronounced on the 6-10 year timescale. The Hurst exponent values were all greater than 0.8, indicating strong persistence and a high probability that the current upward trend will continue in the future. Correlation analysis revealed that PWV had the lowest correlation with the Asian Meridional Circulation Index and the highest correlation with the Arctic Oscillation Index.

Key words: precipitable water vapor, space-time change, Mann-Kendall test, Morlet wavelet, Hurst index, Qinghai Plateau