收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (10): 1747-1759.doi: 10.12118/j.issn.1000-6060.2024.796 cstr: 32274.14.ALG2024796

• 气候与水文 • 上一篇    下一篇

新疆极端气温冷(暖)指数历史变化及未来情景预估

杨扬1(), 常伟1(), 张兴东2   

  1. 1.石河子大学经济与管理学院,新疆 石河子 832002
    2.中国科学院东北地理与农业生态研究所,吉林 长春 130102
  • 收稿日期:2024-12-27 修回日期:2025-03-06 出版日期:2025-10-25 发布日期:2025-10-27
  • 通讯作者: 常伟(1974-),男,教授,博士生导师,主要从事农业农村发展研究. E-mail: changw@shzu.edu.cn
  • 作者简介:杨扬(1992-),女,博士研究生,主要从事气候变化与农业发展研究. E-mail: 20222316113@stu.shzu.edu.cn
  • 基金资助:
    国家自然科学青年基金项目(42401094)

Historical changes and future scenario projections of extreme temperature cold (warm) index in Xinjiang

YANG Yang1(), CHANG Wei1(), ZHANG Xingdong2   

  1. 1. School of Economics and Management, Shihezi University, Shihezi 832002, Xingjiang, China
    2. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
  • Received:2024-12-27 Revised:2025-03-06 Published:2025-10-25 Online:2025-10-27

摘要:

通过分析全球变暖背景下新疆极端气温冷(暖)指数的历史及未来变化特征,为制定气候变化适应策略提供科学依据。基于1960—2021年新疆52个气象站点观测数据及1960—2100年第六次耦合模式比较计划(Coupled model intercomparison project phase 6,CMIP6)气候模式数据,通过模拟精度验证筛选出性能较好的气候模式数据,采用多模式集合平均方法,研究新疆历史时期及未来SSP1-2.6、SSP2-4.5和SSP5-8.5 3种情景下4种极端气温冷指数和4种极端气温暖指数的变化特征。结果表明:(1) 1960—2021年新疆极端气温冷指数显著下降,暖指数显著上升,整体呈现变暖趋势,且夜间气温变化幅度大于白天。(2) 气候模式平均结果显示,3种情景下新疆地区2025—2100年气温冷指数呈现持续下降趋势,暖指数呈现持续上升趋势,其中SSP5-8.5情景下变化幅度最大。(3) 空间分布显示,极端气温冷(暖)指数变化呈现出差异性与一致性并存的特征。夏天日数和暖夜日数在3种情景下高度相似,而霜冻日数、冷夜日数、冷昼日数和生长季长度在SSP2-4.5和SSP5-8.5情景下一致性较高。新疆已进入显著变暖的气候状态,未来这一趋势将持续。因此,应加强气候适应能力建设,以保障区域可持续发展。

关键词: CMIP6气候模式, 极端气温指数, 时空变化, 气候倾向率, 新疆

Abstract:

To examine the historical and projected variations of cold and warm extreme temperature indices in Xinjiang, China under global warming, this study provides a scientific basis for developing climate adaptation strategies. Using observational data from 52 meteorological stations in Xinjiang (1960—2021) and Coupled model intercomparison project phase 6 (CMIP6) climate model outputs (1960—2100), models with superior simulation accuracy were selected. Multi-model ensemble means were then applied to analyze four cold and four warm extreme temperature indices during the historical period and under three future scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. The results show that: (1) From 1960 to 2021, cold indices significantly decreased, while warm indices increased, with nighttime changes exceeding daytime variations, reflecting an overall regional warming trend. (2) Future projections (2025—2100) indicate continued decreases in cold indices and increases in warm indices across all scenarios, with the SSP5-8.5 pathway exhibiting the most pronounced changes. (3) Spatially, cold and warm indices change consistently across Xinjiang, with both regional differences and commonalities. Summer days and warm nights exhibit strong similarity under all scenarios, whereas frost days, cool nights, cool days, and growing season length show higher consistency under SSP2-4.5 and SSP5-8.5. Xinjiang is already undergoing an extreme warming process, which is expected to intensify. Strengthening adaptive capacity is therefore essential to ensure sustainable regional development.

Key words: CMIP6 models, extreme temperatures events, spatial-temporal differentiation, climate tendency rate, Xinjiang