干旱区地理 ›› 2025, Vol. 48 ›› Issue (4): 673-688.doi: 10.12118/j.issn.1000-6060.2024.392 cstr: 32274.14.ALG2024392
邢梦祥1,2(), 郑江华1,2(
), 李刚勇3,4, 彭建3,4, 凯撒·米吉提3,4, 刘亮1,2, 张建立3,4, 马丽莎1,2, 陆建涛1,2
收稿日期:
2024-06-25
修回日期:
2024-12-30
出版日期:
2025-04-25
发布日期:
2025-04-18
通讯作者:
郑江华(1973-),男,博士,教授、博士生导师,主要从事遥感与地理信息系统应用研究. E-mail: zheng.jianghua@xju.edu.cn作者简介:
邢梦祥(1999-),男,硕士研究生,从事植被与环境遥感研究. E-mail: 107552201169@stu.xju.edu.cn
基金资助:
XING Mengxiang1,2(), ZHENG Jianghua1,2(
), LI Gangyong3,4, PENG Jian3,4, Kaisa MIJITI3,4, LIU Liang1,2, ZHANG Jianli3,4, MA Lisha1,2, LU Jiantao1,2
Received:
2024-06-25
Revised:
2024-12-30
Published:
2025-04-25
Online:
2025-04-18
摘要:
塔城地区作为重要农牧区,深入研究草地健康对草地保护及放牧管理具有重要意义,但关于该地区不同草地类型在长时间序列下健康时空动态及其驱动力仍有待探究。选取15个指标构建“压力-状态-响应”模型,采用空间主成分分析、变异系数、Hurst指数、空间自相关和地理探测器方法评价2001—2020年塔城地区草地健康时空动态及其驱动力。结果表明:(1) 时间上,塔城地区草地健康值呈波动下降趋势。草地的警戒和崩溃等级的变化趋势相反,亚健康和健康等级趋势基本稳定。(2) 空间上,塔城地区草地多年平均健康等级空间分布自西向东由亚健康等级逐渐转为警戒和崩溃状态。不同草地类型健康等级多为亚健康状态。(3) 未来变化趋势上,塔城地区草地健康以持续减少为主,主要分布在塔城市、额敏县南部、和布克赛尔蒙古自治县北部。(4) 驱动因素上,植被因子能够更好地反映出塔城地区草地健康状况,而因子交互作用比单因子更能产生明显的增强效应。研究结果可为塔城地区未来草地的规划和管理提供理论依据和参考价值。
邢梦祥, 郑江华, 李刚勇, 彭建, 凯撒·米吉提, 刘亮, 张建立, 马丽莎, 陆建涛. 2001—2020年塔城地区草地健康时空变化特征及其驱动力分析[J]. 干旱区地理, 2025, 48(4): 673-688.
XING Mengxiang, ZHENG Jianghua, LI Gangyong, PENG Jian, Kaisa MIJITI, LIU Liang, ZHANG Jianli, MA Lisha, LU Jiantao. Spatiotemporal dynamics and driving forces of grassland health in Tacheng Prefecture from 2001 to 2020[J]. Arid Land Geography, 2025, 48(4): 673-688.
表1
数据来源"
目标层 | 准则层 | 指标层 | 单位 | 空间分辨率 | 数据来源 | 属性 |
---|---|---|---|---|---|---|
塔城地区草地健康评价指标 | 压力层(P) | 年均降水量 | mm·a-1 | 0.0833° | https://data.tpdc.ac.cn/ | + |
年均气温 | ℃·a-1 | 0.0833° | https://data.tpdc.ac.cn/ | + | ||
草原载蓄量 | 羊·km-2 | - | https://tjj.xinjiang.gov.cn/ | - | ||
人均耕地面积 | hm2·人-1 | 1 km | https://tjj.xinjiang.gov.cn/ | - | ||
人口密度 | 人·km-2 | - | https://tjj.xinjiang.gov.cn/ | - | ||
状态层(S) | 净初级生产力 | g C·m-2·a-1 | 500 m | https://urs.earthdata.nasa.gov/home | + | |
植被覆盖度 | % | 250 m | https://urs.earthdata.nasa.gov/home | + | ||
归一化植被指数 | - | 250 m | https://urs.earthdata.nasa.gov/home | + | ||
增强植被指数 | - | 250 m | https://urs.earthdata.nasa.gov/home | + | ||
坡度 | (°) | 90 m | 通过高程计算 | - | ||
高程 | m | 90 m | https://www.resdc.cn/ | - | ||
响应层(R) | 耕地面积比重 | % | - | https://tjj.xinjiang.gov.cn/ | - | |
人均GDP | 104元 | - | https://tjj.xinjiang.gov.cn/ | + | ||
经济密度 | 元·km-1 | 1 km | https://tjj.xinjiang.gov.cn/ | + | ||
城市化水平 | % | - | https://tjj.xinjiang.gov.cn/ | + |
[1] | Wang S, Dai E, Jia L, et al. Assessment of multiple factors and interactions affecting grassland degradation on the Tibetan Plateau[J]. Ecological Indicators, 2023, 154: 110509, doi: 10.1016/j.ecolind.2023.110509. |
[2] | 刘玉佳, 彭建, 李刚勇, 等. 基于GEE的库鲁斯台草原生态环境评价[J]. 生态学杂志, 2023, 42(11): 2776-2785. |
[Liu Yujia, Peng Jian, Li Gangyong, et al. Eeo-environmental assessment of Kurustai grassland based on Google Earth Engine[J]. Chineese Journal of Ecology, 2023, 42(11): 2776-2785.] | |
[3] | Bengtsson J, Bullock J M, Egon B, et al. Grasslands: More important for ecosystem services than you might think[J]. Ecosphere, 2019, 10(2): e02582, doi: 10.1002/ecs2.2582. |
[4] | 陈春波, 李刚勇, 彭建, 等. 新疆草地生态健康智能监测网络体系构建[J]. 草业科学, 2023, 40(5): 1420-1434. |
[Chen Chunbo, Li Gangyong, Peng Jian, et al. The systematic construction of a smart network for ecological health observation of grassland in Xinjiang[J]. Pratacultural Science, 2023, 40(5): 1420-1434.] | |
[5] | 郭宏. 新疆塔城地区天然草原退化原因及治理对策[J]. 草食家畜, 2015(3): 55-57. |
[Guo Hong. Causes and countermeasures of natural grassland degradation in Tacheng area of Xinjiang Province[J]. Grass-feeding Livetock, 2015(3): 55-57.] | |
[6] | 董世魁, 张宇豪, 王冠聪. 草地健康与退化评价: 概念、原理及方法[J]. 草业科学, 2023, 40(12): 2971-2981. |
[Dong Shikui, Zhang Yuhao, Wang Guancong. Assessment of grassland health and degradation: Concepts, principles, and methods[J]. Pratacultural Science, 2023, 40(12): 2971-2981.] | |
[7] |
陈春波, 彭建, 李刚勇. 新疆草地生态系统健康评价体系构建[J]. 干旱区研究, 2022, 39(1): 270-281.
doi: 10.13866/j.azr.2022.01.26 |
[Chen Chunbo, Peng Jian, Li Gangyong. Establishment of grassland ecosystem health evaluation system in Xinjiang[J]. Arid Zone Research, 2022, 39(1): 270-281.]
doi: 10.13866/j.azr.2022.01.26 |
|
[8] |
刘亮, 彭建, 李刚勇, 等. 2010—2021年新疆库鲁斯台草原动态遥感监测变化分析[J]. 新疆农业科学, 2024, 61(1): 230-240.
doi: 10.6048/j.issn.1001-4330.2024.01.025 |
[Liu Liang, Peng Jian, Li Gangyong, et al. Analysis of dynamic remote sensing monitoring changes in Kulusitai grassland in Xinjiang from 2010 to 2021[J]. Xinjiang Agricultural Science, 2024, 61(1): 230-240.] | |
[9] | 姜佳昌, 孙斌, 潘冬荣, 等. 基于VOR指数的肃南县草地生态系统健康评价[J]. 中国草食动物科学, 2020, 40(4): 39-43. |
[Jiang Jiachang, Sun Bin, Pan Dongrong, et al. Health assessment of grassland ecosystem in Sunan County based on VOR index[J]. China Herbivore Science, 2020, 40(4): 39-43.] | |
[10] | 陆均, 胡玉昆, 岳平, 等. 基于CVOR指数的巴音布鲁克高寒草原健康评价[J]. 干旱区研究, 2017, 34(4): 862-869. |
[Lu Jun, Hu Yukun, Yue Ping, et al. Assessment on the health of alpine steppe in Bayinbuluk based on CVOR index[J]. Arid Zone Research, 2017, 34(4): 862-869.] | |
[11] | 赵玉婷, 李文龙, 陈迪, 等. 高寒牧区草地生态系统健康动态评价—以甘南地区为例[J]. 草业科学, 2017, 34(1): 16-29. |
[Zhao YuTing, Li Wenlong, Chen Di, et al. Dynamic assessment of alpine pasture grassland ecosystem health: A case study from the Gannan region[J]. Pratacultural Science, 2017, 34(1): 16-29.] | |
[12] | Miller M E. Broad-scale assessment of rangeland health, grand staircase-escalante national monument, USA[J]. Rangeland Ecology & Management, 2008, 61(3): 249-262. |
[13] | 王玮, 常学礼, 吕世海, 等. 高寒草原湿地自然保护区生态系统健康评价[J]. 生态学杂志, 2013, 32(10): 2780-2787. |
[Wang Wei, Chang Xueli, Lü Shihai, et al. Ecosystem health assessment of alpine grassland wetland nature reserve[J]. Chinese Journal of Ecology, 2013, 32(10): 2780-2787.] | |
[14] |
马春燕, 刘明蕊, 刘世婷, 等. 草地健康评价方法研究综述[J]. 应用生态学报, 2023, 34(12): 3427-3436.
doi: 10.13287/j.1001-9332.202312.007 |
[Ma Chunyan, Liu Mingrui, Liu Shiting, et al. Research review on methods of grassland health assessment[J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3427-3436.]
doi: 10.13287/j.1001-9332.202312.007 |
|
[15] | Costanza R, Mangeau M. What is a healthy ecosystem?[J]. Aquatic Ecology, 1999, 33(1): 105-115. |
[16] | Tongway D, Hindley N. Landscape function analysis: A system for monitoring rangeland function[J]. African Journal of Range & Forage Science, 2004, 21(2): 109-113. |
[17] |
孙宇, 刘维忠, 盛洋. 基于PSR模型的新疆水资源经济生态韧性时空差异及影响因素分析[J]. 干旱区地理, 2023, 46(12): 2017-2028.
doi: 10.12118/j.issn.1000-6060.2023.155 |
[Sun Yu, Liu Weizhong, Sheng Yang. Spatiotemporal differences and influencing factors of economic and ecological resilience of water resources in Xinjiang based on the PSR model[J]. Arid Land Geography, 2023, 46(12): 2017-2028.]
doi: 10.12118/j.issn.1000-6060.2023.155 |
|
[18] |
刘思怡, 丁建丽, 张钧泳, 等. 艾比湖流域草地生态系统环境健康遥感诊断[J]. 草业学报, 2020, 29(10): 1-13.
doi: 10.11686/cyxb2019542 |
[Liu Siyi, Ding Jianli, Zhang Junyong, et al. Remote sensing diagnosis of grassland ecosystem environmental health in the Ebinur Lake Basin[J]. Acta Prataculturae Sinica, 2020, 29(10): 1-13.]
doi: 10.11686/cyxb2019542 |
|
[19] | Yi F, Lu Q, Li Y, et al. Ecological vulnerability assessment of natural oasis in arid Areas: Application to Dunhuang, China[J]. Ecological Indicators, 2023, 149: 110139, doi: 10.1016/j.ecolind.2023.110139. |
[20] | Kang H, Tao W, Chang Y, et al. A feasible method for the division of ecological vulnerability and its driving forces in southern Shaanxi[J]. Journal of Cleaner Production, 2018, 205: 619-628. |
[21] | Kamran M, Yamamoto K. Evolution and use of remote sensing in ecological vulnerability assessment: A review[J]. Ecological Indicators, 2023, 148: 110099, doi: 10.1016/j.ecolind.2023.110099. |
[22] | Gong Z, Ge W, Guo J, et al. Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 217: 149-164. |
[23] | 高婧, 井立红, 陈静, 等. 塔城地区1961—2020年季节性干旱演变特征[J]. 沙漠与绿洲气象, 2023, 17(5): 109-117. |
[Gao Jing, Jing Lihong, Chen Jing, et al. Evolution characteristics of seasonal drought in Tacheng area of Xinjiang from 1961 to 2020[J]. Desert and Oasis Meteorology, 2023, 17(5): 109-117.] | |
[24] | 许鹏. 新疆草地资源及其利用[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993. |
[Xu Peng. Grassland resources and their utilization in Xinjiang[M]. Urumqi: Xinjiang Science and Technology Health Press, 1993.] | |
[25] | Hu X, Ma C, Huang P, et al. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection: A case of Weifang City, China[J]. Ecological Indicators, 2021, 125: 107464, doi: 10.1016/j.ecolind.2021.107464. |
[26] | 赵浩然, 曹生奎, 曹广超, 等. 2000—2020年青海湖流域植被降水利用效率时空变化特征[J]. 生态学报, 2024, 44(8): 1-17. |
[Zhao Haoran, Cao Shengkui, Cao Guangchao, et al. Spatial and temporal characteristics of annual vegetation precipitation use efficiency in the Qinghai Lake Basin from 2000 to 2020[J]. Acta Ecologica Sinica, 2024, 44(8): 1-17.] | |
[27] | 刘亮, 关靖云, 穆晨, 等. 2008—2018年伊犁河流域植被净初级生产力时空分异特征[J]. 生态学报, 2022, 42(12): 4861-4871. |
[Liu Liang, Guan Jingyun, Mu Chen, et al. Spatio-temporal characterstics of vegetation net primary productivity in the Ili River Basin from 2008 to 2018[J]. Acta Ecologica Sinica, 2022, 42(12): 4861-4871.] | |
[28] |
刘如龙, 赵媛媛, 陈国清, 等. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683.
doi: 10.13866/j.azr.2024.04.13 |
[Liu Rulong, Zhao Yuanyuan, Chen Guoqing, et al. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020[J]. Arid Zone Research, 2024, 41(4): 674-683.]
doi: 10.13866/j.azr.2024.04.13 |
|
[29] | Jiang B, Chen W, Dai X, et al. Change of the spatial and temporal pattern of ecological vulnerability: A case study on Cheng-Yu urban agglomeration, southwest China[J]. Ecological Indicators, 2023, 149: 110161, doi: 10.1016/j.ecolind.2023.110161. |
[30] | 勿吉斯古冷, 那日苏, 丽娜, 等. 2001—2020年呼伦贝尔草原土地沙漠化敏感性时空格局演化[J/OL]. 干旱区地理.[2024-12-20]. https://link.cnki.net/urlid/65.1103.X.20241009.0918.001. |
[Wujisiguleng, Narisu, Li Na, et al. Spatiotemporal pattern evolution of land desertification sensitivity in Hulun Buir grassland from 2001 to 2020[J/OL]. Arid Land Geography.[2024-12-20]. https://link.cnki.net/urlid/65.1103.X.20241009.0918.001.] | |
[31] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[32] |
和海秀, 付爱红, 王川. 塔城地区西北部低山草甸植被指数变化及其驱动力[J]. 中国沙漠, 2023, 43(1): 187-196.
doi: 10.7522/j.issn.1000-694X.2022.00122 |
[He Haixiu, Fu Aihong, Wang Chuan. Negetation index change and its driving forces of low mountain meadow vegetation in the northwest of Tacheng Region, Xinjiang, China[J]. Journal of Desert Research, 2023, 43(1): 187-196.]
doi: 10.7522/j.issn.1000-694X.2022.00122 |
|
[33] | 殷桂涛. 退耕还草工程在塔城地区塔尔巴合台山前旱地的生态恢复效果研究[J]. 草食家畜, 2016(5): 70-73. |
[Yin Guitao. Study on ecology restoring farmland to grassland in dryland of Taerbahetaishan in Tacheng[J]. Grass Feeding Livestock, 2016(5): 70-73.] | |
[34] | 范君. 北疆草地覆盖度和净初级生产力的时空变化及退化分析[D]. 乌鲁木齐: 新疆农业大学, 2023. |
[Fan Jun. Spatio-temporal variation and degradation analysis of grassland coverage and net primary productivity in north Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2023.] | |
[35] |
孙桂丽, 陆海燕, 郑佳翔, 等. 新疆生态脆弱性时空演变及驱动力分析[J]. 干旱区研究, 2022, 39(1): 258-269.
doi: 10.13866/j.azr.2022.01.25 |
[Sun Guili, Lu Haiyan, Zheng Jiaxiang, et al. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J]. Arid Zone Research, 2022, 39(1): 258-269.]
doi: 10.13866/j.azr.2022.01.25 |
|
[36] | 和海秀, 周洪华, 白如霄. 基于土地利用变化的新疆塔城地区碳排放特征分析[J]. 水土保持通报, 2022, 42(3): 373-380. |
[He Haixiu, Zhou Honghua, Bai Ruxiao. Characteristics of carbon emissions based on land use changes in Tacheng Area of Xinjiang Uygur Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2022, 42(3): 373-380.] | |
[37] | 古丽娜尔·沙亚汗, 李佳欢, 谭学周, 等. 新疆塔城不同类型草场生产力动态变化[J]. 草地学报, 2017, 25(1): 49-54. |
[Shayakhan Gulnar, Li Jiahuan, Tan Xuezhou, et al. Dynamic change of grassland productivity in Tacheng, Xinjiang[J]. Acta Agrestia Sinica, 2017, 25(1): 49-54.]
doi: 10.11733/j.issn.1007-0435.2017.01.008 |
|
[38] | 朱大鹏, 何祥博, 李涛, 等. 基于气候变暖和封山禁牧的关山草原生态系统变化研究[J]. 绿色科技, 2022, 24(18): 47-51, 6. |
[Zhu Dapeng, He Xiangbo, Li Tao, et al. Research progress of grassland ecosystem changes in guanshan grassland based on climate warming and grazing prohibition factors[J]. Journal of Green Science and Technology, 2022, 24(18): 47-51, 6.] | |
[39] | 黄兰鹰, 张好, 杨育林, 等. 1998—2020年若尔盖地区植被NDVI变化特征及驱动因子分析[J]. 自然保护地, 2024, 4(3): 74-75. |
[Huang Lanying, Zhang Hao, Yang Yulin, et al. Analysis of driving factors and variation characteristics of vegetation NDVI in Zoige region from 1998 to 2020[J]. Natural Protected Areas, 2024, 4(3): 74-75.] | |
[40] | Geng X, Wang X, Fang H, et al. Vegetation coverage of desert ecosystems in the Qinghai-Tibet Plateau is underestimated[J]. Ecological Indicators, 2022, 137: 108780, doi: 10.1016/j.ecolind.2022.108780. |
[41] | Xue H, Chen Y, Dong G, et al. Quantitative analysis of spatiotemporal changes and driving forces of vegetation net primary productivity (NPP) in the Qimeng region of Inner Mongolia[J]. Ecological Indicators, 2023, 154: 110610, doi: 10.1016/j.ecolind.2023.110610. |
[42] | Xi Z, Chen G, Xing Y, et al. Spatial and temporal variation of vegetation NPP and analysis of influencing factors in Heilongjiang Province, China[J]. Ecological Indicators, 2023, 154: 110798, doi: 10.1016/j.ecolind.2023.110798. |
[43] | Zhou Q, Chen W, Wang H, et al. Spatiotemporal evolution and driving factors analysis of fractional vegetation coverage in the arid region of northwest China[J]. Science of the Total Environment, 2024, 954: 176271, doi: 10.1016/j.scitotenv.2024.176271. |
[44] |
张倩, 曹广超, 张乐乐, 等. 祁连山南坡植被绿度时空变化及其对气候变化和人类活动的响应[J]. 干旱区研究, 2024, 41(12): 2143-2153.
doi: 10.13866/j.azr.2024.12.15 |
[Zhang Qian, Cao Guangchao, Zhang Lele, et al. Spatiotemporal changes in vegetation greenness on the southern slopes of the Qilian Mountains and their responses to climate change and human activities[J]. Arid Zone Research, 2024, 41(12): 2143-2153.]
doi: 10.13866/j.azr.2024.12.15 |
[1] | 黄学煜, 修丽娜, 陆志翔. 陇东黄土高原生态系统服务权衡效应及其驱动因素[J]. 干旱区地理, 2025, 48(3): 480-493. |
[2] | 刘伟, 凌红波, 公延明, 陈伏龙, 单钱娟. 基于改进型遥感生态指数的塔里木河干流生态环境质量评价[J]. 干旱区地理, 2025, 48(2): 271-282. |
[3] | 李康宁, 林伊琳, 赵俊三, 王健, 葛峰. 三江源植被覆盖变化驱动机制及生态脆弱性分析[J]. 干旱区地理, 2025, 48(2): 283-295. |
[4] | 程云洁, 杨淋杰. 中国旅游双循环市场效率空间演进及驱动因素异质性研究[J]. 干旱区地理, 2024, 47(9): 1606-1616. |
[5] | 朱磊, 李燕楠, 徐佳慧, 胡静, 朱芳, 梁茫茫. 中国冰雪旅游地空间分布格局及成因[J]. 干旱区地理, 2024, 47(8): 1399-1410. |
[6] | 张晓东, 武丹, 王莹, 赵银鑫, 马瑜, 马玉学, 倪海玲. 耦合InVEST与Geodetector模型的银川市生境质量时空演变特征及影响因子研究[J]. 干旱区地理, 2024, 47(7): 1242-1251. |
[7] | 赵雪纯, 菊春燕. 公园绿地与城市功能空间耦合协调关系及影响因素分析——以乌鲁木齐市为例[J]. 干旱区地理, 2024, 47(5): 898-908. |
[8] | 卢冬燕, 朱秀芳, 唐明秀, 郭春华, 刘婷婷. 不同温升情景下中国旱灾风险变化评估[J]. 干旱区地理, 2024, 47(3): 369-379. |
[9] | 李俊佳, 赵美风. 中国民族地区高质量发展空间演变及其影响机理[J]. 干旱区地理, 2024, 47(3): 496-505. |
[10] | 陈繁繁, 白永平, 梁建设, 张春悦, 赵越, 龚享林. 兰州市蔬菜市场的空间分布特征及影响因素研究[J]. 干旱区地理, 2024, 47(2): 293-306. |
[11] | 慕石雷, 杨玉欢, 乌日陶克套胡. 国家沙漠(石漠)公园空间分异格局与影响因素[J]. 干旱区地理, 2024, 47(2): 356-368. |
[12] | 周孝明, 张喆, 张越, 王俣凝. 基于TVDI的近20 a吐鲁番市干旱及影响因素分析[J]. 干旱区地理, 2024, 47(12): 2104-2114. |
[13] | 王紫彦, 牛莉芹, 程占红. 生态福利绩效时空演化及影响因素研究——以山西省为例[J]. 干旱区地理, 2024, 47(12): 2152-2163. |
[14] | 杨雨, 宋福铁, 张杰. 基于地理探测器的中国金融网络空间结构特征及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1524-1535. |
[15] | 李建辉, 陈琳, 党争. 黄河流域爱国主义教育基地空间格局及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1536-1544. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|