[1] |
Zhang T, Wang W, An B, et al. Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole[J]. Nature Communications, 2023, 14(1): 8250, doi:10.1038/s41467-023-44123-z.
|
[2] |
Nie Y, Deng Q, Pritchard H D, et al. Glacial lake outburst floods threaten Asia’s infrastructure[J]. Science Bulletin, 2023, 68(13): 1361-1365.
|
[3] |
Shugar D H, Burr A, Haritashya U K, et al. Rapid worldwide growth of glacial lakes since 1990[J]. Nature Climate Change, 2020, 10(10): 939-945.
|
[4] |
Harrison S, Kargel J S, Huggel C, et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods[J]. The Cryosphere, 2018, 12(4): 1195-1209.
|
[5] |
雷鹏嗣, 王伟财, 张太刚. 1990—2020年那曲地区冰湖变化研究[J]. 北京师范大学学报(自然科学版), 2022, 58(6): 936-944.
|
|
[Lei Pengsi, Wang Weicai, Zhang Taigang. Changes in glacial lakes in Naqu from 1990 to 2020[J]. Journal of Beijing Normal University (Natural Science Edition), 2022, 58(6): 936-944.]
|
[6] |
Bazai N A, Cui P, Carling P A, et al. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram[J]. Earth-Science Reviews, 2021, 212: 103432, doi: 10.1016/j.earscirev.2020.103432.
|
[7] |
Zhang Q, Chen Y, Li Z, et al. Glacier changes from 1975 to 2016 in the Aksu River Basin, central Tianshan Mountains[J]. Journal of Geographical Sciences, 2019, 29(6): 984-1000.
doi: 10.1007/s11442-019-1640-z
|
[8] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002
|
|
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002
|
[9] |
陈亚宁, 朱成刚, 李稚, 等. 昆仑山北坡区域高质量发展面临的问题、机遇与挑战[J]. 干旱区地理, 2024, 47(5): 733-740.
doi: 10.12118/j.issn.1000-6060.2024.097
|
|
[Chen Yaning, Zhu Chenggang, Li Zhi, et al. High-quality development in the northern slope of the Kunlun Mountains: Issues, opportunities and challenges[J]. Arid Land Geography, 2024, 47(5): 733-740.]
doi: 10.12118/j.issn.1000-6060.2024.097
|
[10] |
王根绪, 程国栋, 徐中民. 中国西北干旱区水资源利用及其生态环境问题[J]. 自然资源学报, 1999, 14(2): 109-116.
|
|
[Wang Gen- xu, Cheng Guodong, Xu Zhongmin. The utilization of water resource and its influence on eco environment in the northwest arid area of China[J]. Journal of Natural Resources, 1999, 14(2): 109-116.]
doi: 10.11849/zrzyxb.1999.02.003
|
[11] |
Rawat M, Jain S K, Ahmed R, et al. Glacial lake outburst flood risk assessment using remote sensing and hydrodynamic modeling: A case study of Satluj Basin, Western Himalayas, India[J]. Environmental Science and Pollution Research, 2023, 30(14): 41591-41608.
|
[12] |
Carrivick J L, Tweed F S. A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016, 144: 1-16.
|
[13] |
常鸣, 唐川, 窦向阳. 藏东南典型冰湖溃决机制及危险性研究[J]. 南水北调与水利科技, 2017, 15(6): 115-121.
|
|
[Chang Ming, Tang Chuan, Dou Xiangyang. Mechanism and hazards of typical glacial-lake burst in the southern Tibet[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(6): 115-121.]
|
[14] |
陈亚宁, 李忠勤, 徐建华, 等. 中国西北干旱区水资源与生态环境变化及保护建议[J]. 中国科学院院刊, 2023, 38(3): 385-393.
|
|
[Chen Yaning, Li Zhongqin, Xu Jianhua, et al. Changes and protection suggestions in water resources and ecological environment in arid region of northwest China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 385-393.]
|
[15] |
努尔比亚·吐尼牙孜, 米日古丽·米吉提, 毛炜峄, 等. 1961—2021年叶尔羌河流域克亚吉尔冰湖溃决洪水变化特征[J]. 冰川冻土, 2023, 45(4): 1288-1299.
doi: 10.7522/j.issn.1000-0240.2023.0099
|
|
[Tunyaz Nurbiya, Mijit Mihrigul, Mao Weiyi, et al. Variation characteristics of Kyagar Glacial Lake outburst floods in the Yarkand River Basin from 1961 to 2021[J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1288-1299.]
doi: 10.7522/j.issn.1000-0240.2023.0099
|
[16] |
王翔, 陈果, 戴晓爱, 等. 藏西南典型危险性冰湖监测与泥石流溃决模拟[J]. 山地学报, 2021, 39(5): 687-700.
|
|
[Wang Xiang, Chen Guo, Dai Xiaoai, et al. Typical monitoring of dangerous glacial lakes in southwestern Tibet, China and simulation of GLOF debris flow[J]. Journal of Mountain Science, 2021, 39(5): 687-700.]
|
[17] |
Drenkhan F, Guardamino L, Huggel C, et al. Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba Basin, Peruvian Andes[J]. Global and Planetary Change, 2018, 169: 105-118.
|
[18] |
赵万玉, 陈晓清, 刘建康, 等. 冰川终碛湖溃决-再生特征与机理[J]. 山地学报, 2015, 33(6): 703-712.
|
|
[Zhao Wanyu, Chen Xiaoqing, Liu Jiankang, et al. Outburst-regeneration characteristic and mechanism of glacier lake[J]. Journal of Mountain Science, 2015, 33(6): 703-712.]
|
[19] |
丁悦凯, 刘睿, 张翠兰, 等. 喜马拉雅地区叶如藏布流域冰川和冰湖变化遥感监测研究[J]. 干旱区地理, 2022, 45(6): 1870-1880.
doi: 10.12118/j.issn.1000-6060.2022.110
|
|
[Ding Yuekai, Liu Rui, Zhang Cuilan, et al. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas[J]. Arid Land Geography, 2022, 45(6): 1870-1880.]
doi: 10.12118/j.issn.1000-6060.2022.110
|
[20] |
汤远航, 李梦琦, 邓铃, 等. 1990—2020年朋曲流域冰川变化及其对气候变化的响应[J]. 干旱区地理, 2022, 45(1): 27-36.
doi: 10.12118/j.issn.1000–6060.2021.159
|
|
[Tang Yuanhang, Li Mengqi, Deng Ling, et al. Glacier change and its response to climate change in Pumqu Basin during 1990—2020[J]. Arid Land Geography, 2022, 45(1): 27-36.]
doi: 10.12118/j.issn.1000–6060.2021.159
|
[21] |
Zhang G, Zheng G, Gao Y, et al. Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(7): 509-519.
|
[22] |
Li J, Sheng Y. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas[J]. International Journal of Remote Sensing, 2012, 33(16): 5194-5213.
|
[23] |
孟乘枫, 仲涛, 郑江华, 等. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106.
doi: 10.13866/j.azr.2023.07.07
|
|
[Meng Chengfeng, Zhong Tao, Zheng Jianghua, et al. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes[J]. Arid Zone Research, 2023, 40(7): 1094-1106.]
doi: 10.13866/j.azr.2023.07.07
|
[24] |
马俊学, 陈剑, 崔之久, 等. 基于HEC-RAS及GIS的川西叠溪古滑坡堰塞湖溃决洪水重建[J]. 现代地质, 2022, 36(2): 610-623.
|
|
[Ma Junxue, Chen Jian, Cui Zhijiu, et al. HEC-RAS-/GIS-based paleohydraulic reconstruction of the Diexi Ancient landslide-dammed lake outburst flood in western Sichuan Province[J]. Modern Geology, 2022, 36(2): 610-623.]
|
[25] |
Zhang Q, Chen Y, Li Z, et al. Recent changes in water discharge in snow and glacier melt-dominated rivers in the Tienshan Mountains, Central Asia[J]. Remote Sensing, 2020, 12(17): 2704, doi: 10.3390/rs12172704.
|
[26] |
朱军涛, 李向义, 张希明, 等. 昆仑山北坡前山带塔里木沙拐枣对不同海拔生境的生理生态响应[J]. 生态学报, 2010, 30(3): 602-609.
|
|
[Zhu Juntao, Li Xiangyi, Zhang Ximing, et al. Ecophysiological response of Calligonum roborovskii to the habitats in different altitudes in north slope of Kunlun Mountain[J]. Acta Ecologica Sinica, 2010, 30(3): 602-609.]
|
[27] |
许有鹏, 杨戍. 昆仑山北坡河流水文水资源特征研究[J]. 地理科学, 1994(4): 338-346, 390.
|
|
[Xu Youpeng, Yang Shu. Approach to water resource characteristics of rivers in north slope area of the Kunlun Mountains[J]. Scientia Geographica Sinica, 1994(4): 338-346, 390.]
doi: 10.13249/j.cnki.sgs.1994.04.338
|
[28] |
Guo H, Bao A, Liu T, et al. Determining variable weights for an optimal scaled drought condition index (OSDCI): Evaluation in Central Asia[J]. Remote Sensing of Environment, 2019, 231: 111220, doi: 10.1016/j.rse.2019.111220.
|
[29] |
王欣. 中国西部冰湖编目数据[DB/OL]. [2015]. https://poles.tpdc.ac.cn/zh-hans/data/c2f98aeb-078e-4f96-afab-828e1436600b.
|
|
[Wang Xin. Inventory data of glacial lake in west China[DB/OL]. [2015]. https://poles.tpdc.ac.cn/zh-hans/data/c2f98aeb-078e-4f96-afab-828e1436600b.]
|
[30] |
刘垚燚, 田恬, 曾鹏, 等. 基于Google Earth Engine平台的1984—2018年太湖水域变化特征[J]. 应用生态学报, 2020, 31(9): 3163-3172.
doi: 10.13287/j.1001-9332.202009.011
|
|
[Liu Yaoyi, Tian Tian, Zeng Peng, et al. Surface water change characteristics of Taihu Lake from 1984—2018 based on Google Earth Engine[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3163-3172.]
doi: 10.13287/j.1001-9332.202009.011
|
[31] |
刘小燕, 崔耀平, 史志方, 等. GEE平台下多源遥感影像对洪灾的监测[J]. 遥感学报, 2023, 27(9): 2179-2190.
|
|
[Liu Xiaoyan, Cui Yaoping, Shi Zhifang, et al. Monitoring of floods using multi-source remote sensing images on the GEE platform[J]. National Remote Sensing Bulletin, 2023, 27(9): 2179-2190.]
|
[32] |
彭妍菲, 李忠勤, 姚晓军, 等. 基于多源遥感数据和GEE平台的博斯腾湖面积变化及影响因素分析[J]. 地球信息科学学报, 2021, 23(6): 1131-1153.
doi: 10.12082/dqxxkx.2021.200361
|
|
[Peng Yanfei, Li Zhongqin, Yao Xiaojun, et al. Area change and cause analysis of Bosten Lake based on multi-source remote sensing data and GEE platform[J]. Journal of Geo-Information Science, 2021, 23(6): 1131-1153.]
|
[33] |
Hanshaw M N, Bookhagen B. Glacial areas, lake areas, and snow lines from 1975 to 2012: Status ofthe Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru[J]. The Cryosphere, 2014(8): 359-376.
|
[34] |
Veh G, Korup O, Von Specht S, et al. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya[J]. Nature Climate Change, 2019, 9(5): 379-383.
|
[35] |
Zheng G, Bao A, Allen S, et al. Numerous unreported glacial lake outburst floods in the Third Pole revealed by high-resolution satellite data and geomorphological evidence[J]. Science Bulletin, 2021, 66(13): 1270-1273.
doi: 10.1016/j.scib.2021.01.014
pmid: 36654147
|
[36] |
Allen S K, Zhang G, Wang W, et al. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach[J]. Science Bulletin, 2019, 64(7): 435-445.
doi: 10.1016/j.scib.2019.03.011
pmid: 36659793
|
[37] |
朱成刚, 陈亚宁, 张明军, 等. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105.
doi: 10.12118/j.issn.1000-6060.2024.117
|
|
[Zhu Chenggang, Chen Yaning, Zhang Mingjun, et al. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains[J]. Arid Land Geography, 2024, 47(7): 1097-1105.]
doi: 10.12118/j.issn.1000-6060.2024.117
|
[38] |
Zhang M, Chen F, Guo H, et al. Glacial lake area changes in High Mountain Asia during 1990—2020 using satellite remote sensing[J]. Research, 2022, 2022(10): 9821275, doi: 10.34133/2022/9821275.
|