Arid Land Geography ›› 2024, Vol. 47 ›› Issue (5): 841-849.doi: 10.12118/j.issn.1000-6060.2023.489
• Biology and Pedology • Previous Articles Next Articles
HUANG Yunbo(), ZHANG Chong(), WANG Yudan
Received:
2023-09-07
Revised:
2023-10-19
Online:
2024-05-25
Published:
2024-05-30
Contact:
ZHANG Chong
E-mail:h200o1@163.com;zhangch3348@126.com
HUANG Yunbo, ZHANG Chong, WANG Yudan. Change trend of vegetation cover and its response to soil moisture status in Weihe River Basin[J].Arid Land Geography, 2024, 47(5): 841-849.
Tab. 1
Area proportion of different influential conditions on the growing season NDVI mean values in various ecological zones of the Weihe River Basin from 2001 to 2020 /%"
生长季NDVI均值变化趋势 | 总体 | 土壤水分 | 人类活动 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
江河源区生态区 | 黄土高原生态区 | 汾渭盆地生态区 | 秦巴山地生态区 | 江河源区生态区 | 黄土高原生态区 | 汾渭盆地生态区 | 秦巴山地生态区 | 江河源区生态区 | 黄土高原生态区 | 汾渭盆地生态区 | 秦巴山地生态区 | |||
快速降低 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | ||
中速降低 | 0.00 | 0.01 | 0.41 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | ||
缓慢降低 | 0.01 | 0.14 | 3.54 | 0.14 | 0.00 | 0.03 | 0.26 | 0.03 | 0.00 | 0.11 | 3.54 | 0.14 | ||
影响较弱 | 0.19 | 6.13 | 8.26 | 3.29 | 0.24 | 46.43 | 24.09 | 7.19 | 0.21 | 8.50 | 8.55 | 4.06 | ||
缓慢增长 | 0.05 | 40.40 | 11.07 | 5.30 | 0.00 | 18.65 | 0.32 | 2.70 | 0.03 | 49.22 | 11.45 | 5.54 | ||
中速增长 | 0.00 | 18.39 | 1.37 | 1.17 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 7.31 | 0.83 | 0.18 | ||
快速增长 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
Tab. 2
Area proportion of different contribution rates of each ecological region in the Weihe River Basin from 2001 to 2020 /%"
贡献率/% | 土壤水分 | 人类活动 | |||||||
---|---|---|---|---|---|---|---|---|---|
江河源区 生态区 | 黄土高原 生态区 | 汾渭盆地 生态区 | 秦巴山地 生态区 | 江河源区 生态区 | 黄土高原 生态区 | 汾渭盆地 生态区 | 秦巴山地 生态区 | ||
<-100 | 0.00 | 0.02 | 0.07 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | |
-100~-75 | 0.00 | 0.06 | 0.18 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | |
-75~-50 | 0.00 | 0.14 | 0.30 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | |
-50~-25 | 0.01 | 0.44 | 0.83 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | |
-25~0 | 0.04 | 7.79 | 7.15 | 2.20 | 0.00 | 0.00 | 0.00 | 0.00 | |
0~25 | 0.09 | 34.10 | 13.43 | 2.84 | 0.00 | 0.24 | 0.07 | 0.10 | |
25~50 | 0.06 | 17.45 | 2.01 | 2.57 | 0.02 | 4.89 | 0.50 | 1.50 | |
50~75 | 0.02 | 4.73 | 0.52 | 1.44 | 0.06 | 17.53 | 2.01 | 2.59 | |
75~100 | 0.01 | 0.51 | 0.22 | 0.24 | 0.09 | 34.18 | 13.68 | 2.87 | |
>100 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 8.48 | 8.45 | 2.68 |
[1] | IPCC. Climate Change 2013: The physical science basis[C]// Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Cambridge: Cambridge University Press, 2013. |
[2] | Shi S Y, Yu J J, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple timescales on the Loess Plateau[J]. Science of the Total Environment, 2021, 755: 142419, doi: 10.1016/j.scitotenv.2020.142419. |
[3] | Han J J, Wang J P, Chen L, et al. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geodetector model[J]. Ecological Indicators, 2021, 124: 107404, doi: 10.1016/j.ecolind.2021.107404. |
[4] | Venkatesh K, John R, Chen J Q, et al. Optimal ranges of social-environmental drivers and their impact on vegetation dynamics in Kazakhstan[J]. Science of the Total Environment, 2022, 847: 157562, doi: 10.1016/j.scitotenv.2022.157562. |
[5] |
彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776.
doi: 10.11821/dlxb201909005 |
[Peng Wenpfu, Zhang Dongmei, Luo Yanmei, et al. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province[J]. Acta Geographica Sinica, 2019, 74(9): 1758-1776. ]
doi: 10.11821/dlxb201909005 |
|
[6] | 徐勇, 郑志威, 郭振东. 2000—2020年长江流域植被NDVI动态变化及影响因素探测[J]. 环境科学, 2022, 43(7): 3730-3740. |
[Xu Yong, Zheng Zhiwei, Guo Zhendong, et al. Dynamic variation in vegetation cover and its influencing factor detection in the Yangtze River Basin from 2000 to 2020[J]. Environmental Science, 2022, 43(7): 3730-3740. ] | |
[7] |
Li W T, Migliavacca M, Forkel M, et al. Widespread increasing vegetation sensitivity to soil moisture[J]. Nature Communications, 2022, 13: 3959, doi: 10.1038/s41467-022-31667-9.
pmid: 35803919 |
[8] | Miguez-Macho G, Yang F. Spatiotemporal origin of soil water taken up by vegetation[J]. Nature, 2021, 598: 624-628. |
[9] | 拉巴, 边巴次仁, 拉珍, 等. 青藏高原土壤水分时空变化特征及其与气候变化的关系研究[J]. 高原科学研究, 2023, 7(1): 1-8. |
[La Ba, Bianba Ciren, La Zhen, et al. Spatiotemporal variation characteristics of soil moisture and its relationship with climate change on the Qinghai-Tibet Platea[J]. Plateau Science, 2023, 7(1): 1-8. ] | |
[10] | Jiang L L, Jiapaer Guli, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 2017, 599/600: 967-980. |
[11] | Meng X Y, Gao X, Li S Y, et al. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982—2015[J]. Remote Sensing, 2020, 12(4): 603, doi: 10.3390/rs12040603. |
[12] | 耿庆玲, 陈晓青, 赫晓慧, 等. 中国不同植被类型归一化植被指数对气候变化和人类活动的响应[J]. 生态学报, 2022, 42(9): 3557-3568. |
[Geng Qingling, Chen Xiaoqing, He Xiaohui, et al. Vegation dynamics and its response to climate change and human activities based on different vegation types in China[J]. Acta Ecologica Sinica, 2022, 42(9): 3557-3568. ] | |
[13] | 吴楠, 陈凝, 程鹏, 等. 安徽省各生态分区的NDVI年际变化特征及归因分析[J]. 长江流域资源与环境, 2023, 32(6): 1200-1207. |
[Wu Nan, Chen Ning, Cheng Peng, et al. Analysis on characteristics and attribution of NDVI interannual change in different ecological divisions in Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2023, 32(6): 1200-1207. ] | |
[14] | 庞家泰, 段金亮, 张瑞, 等. 2000—2019年渭河流域植被覆盖度时空演变特征及气候响应[J]. 水土保持研究, 2021, 28(5): 230-237. |
[Pang Jiatai, Duan Jinliang, Zhang Rui, et al. Characteristics of spatial-temporal evolution and climate response of vegetation cover in the Wei River Basin from 2000 to 2019[J]. Research of Soil and Water Conservation, 2021, 28(5): 230-237. ] | |
[15] | 王丽霞, 张珈玮, 孟妮娜, 等. 基于CA-Markov的渭河流域NDVI时空变化模拟及预测[J]. 水土保持研究, 2020, 27(4): 206-212. |
[Wang Lixia, Zhang Jiawei, Meng Nina, et al. Simulation and prediction of temporal and spatial changes of NDVI in the Wei River Basin based on CA-Markov[J]. Research of Soil and Water Conservation, 2020, 27(4): 206-212. ] | |
[16] | Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2-3): 213-224. |
[17] |
赵杰, 杜自强, 武志涛, 等. 中国温带昼夜增温的季节性变化及其对植被动态的影响[J]. 地理学报, 2018, 73(3): 395-404.
doi: 10.11821/dlxb201803001 |
[Zhao Jie, Du Ziqiang, Wu Zhitao, et al. Seasonal variations of day-and night-time warming and their effects on vegetation dynamics in China’s temperate zone[J]. Acta Geographica Sinica, 2018, 73(3): 395-404. ] | |
[18] | 张翀, 雷田旺, 宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报, 2018, 38(6): 2128-2138. |
[Zhang Chong, Lei Tianwang, Song Dianxing. Analysis of temporal and spatial characteristics of time lag correlation between the vegetation cover and soil moisture in the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(6): 2128-2138. ] | |
[19] |
金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
doi: 10.11821/dlxb202005006 |
[Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982—2015[J]. Acta Geographica Sinica, 2020, 75(5): 961-974. ] | |
[20] | Wang F, Ge Q S, Wang S W, et al. 2015: A new estimation of urbanization’s contribution to the warming trend in China[J]. Journal of Climate, 2015, 28(22): 8923-8938. |
[21] | 陈淑君, 许国昌, 吕志平, 等. 中国植被覆盖度时空演变及其对气候变化和城市化的响应[J]. 干旱区地理, 2023, 46(5): 742-752. |
[Chen Shujun, Xu Guochang, Lü Zhiping, et al. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China[J]. Arid Land Geography, 2023, 46(5): 742-752. ] | |
[22] | 张春森, 胡艳, 史晓亮. 基于AVHRR和MODIS NDVI数据的黄土高原植被覆盖时空演变分析[J]. 应用科学学报, 2016, 34(6): 702-712. |
[Zhang Chunsen, Hu Yan, Shi Xiaoliang. A analysis of the spatial-temporal evolution of vegetation cover in the Loess Plateau in recent 33 years based on AVHRR NDVI and MODIS NDVI[J]. Journal of Applied Sciences, 2016, 34(6): 702-712. ] | |
[23] | Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4): 535-554. |
[24] | 文妙霞, 何学高, 刘欢, 等. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332. |
[Wen Miaoxia, He Xuegao, Liu Huan, et al. Analysis of the spatiotemporal variation characteristics and driving factors of grassland vegetation cover in Ningxia based on geographical detectors[J]. Arid Zone Research, 2023, 40(8): 1322-1332. ] | |
[25] | 刘玉婷, 张齐飞, 刘景时, 等. 近20 a新疆南部植被覆盖度时空特征及对气候因素的响应——以塔什库尔干塔吉克自治县为例[J]. 干旱区地理, 2022, 45(5): 1481-1489. |
[Liu Yuting, Zhang Qifei, Liu Jingshi, et al. Temporal and spatial characteristics of fractional vegetation coverage and its response to climatic factors in southern Xinjiang in recent 20 years: A case of Taxkorgan Tajik Autonomous County[J]. Arid Land Geography, 2022, 45(5): 1481-1489. ] | |
[26] | Wessels K J, Prince S D, Malherbe J, et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa[J]. Journal of Arid Environments, 2007, 68(2): 271-297. |
[27] |
李净, 刘红兵, 李彩云, 等. 基于GIMMS 3g NDVI的近30年中国北部植被生长季始期变化研究[J]. 地理科学, 2017, 37(4): 620-629.
doi: 10.13249/j.cnki.sgs.2017.04.016 |
[Li Jing, Liu Hongbing, Li Caiyun, et al. Changes of green-up day of vegetation growing season based on GIMMS 3g NDVI in northern China in recent 30 years[J]. Scientia Geographica Sinica, 2017, 37(4): 620-629. ]
doi: 10.13249/j.cnki.sgs.2017.04.016 |
|
[28] | Xin Z, Xu J, Zheng W. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981—2006): Impacts of climate changes and human activities[J]. Science in China Series D: Earth Sciences, 2008, 51(1): 67-78. |
[29] | Zhao A, Zhang A, Liu X, et al. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China[J]. Theoretical and Applied Climatology, 2018, 132: 555-567. |
[30] |
邓晨晖, 白红英, 高山, 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018, 33(3): 425-438.
doi: 10.11849/zrzyxb.20170139 |
[Deng Chenhui, Bai Hongying, Gao Shan, et al. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 2018, 33(3): 425-438. ]
doi: 10.11849/zrzyxb.20170139 |
|