Arid Land Geography ›› 2022, Vol. 45 ›› Issue (6): 1740-1751.doi: 10.12118/j.issn.1000-6060.2022.086
• Climatology and Hydrology • Previous Articles Next Articles
MEI Jing1(),SUN Meiping1,2(
),LI Lin1
Received:
2022-03-07
Revised:
2022-05-18
Online:
2022-11-25
Published:
2023-02-01
Contact:
Meiping SUN
E-mail:mjing652016@163.com;sunmeiping1982@163.com
MEI Jing, SUN Meiping, LI Lin. Variations of evapotranspiration and its components in alpine meadow on the Tibetan Plateau based on SWH model[J].Arid Land Geography, 2022, 45(6): 1740-1751.
Tab. 1
Stratified regression of ET with each element"
站点 | 要素 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|---|
那曲站 | PAR | 0.085***(0.726) | 0.002(0.019) | -0.000(0.000) | -0.017**(-0.146) | -0.011(-0.096) | -0.005(-0.042) |
Ta | - | 0.106***(0.920) | 0.105***(0.909) | 0.075***(0.655) | 0.073***(0.636) | 0.005(0.044) | |
VPD | - | - | 0.229(0.035) | 0.648*(0.097) | 0.905**(0.136) | 1.719***(0.259) | |
Rn | - | - | - | 0.082***(0.348) | 0.092***(0.390) | 0.085***(0.359) | |
G | - | - | - | - | -0.272*(-0.115) | 0.068(0.029) | |
LAI | - | - | - | - | - | 0.190***(0.485) | |
Constant | -1.369 | 1.158 | 1.153 | 0.965 | 0.634 | -0.237 | |
N | 230 | 230 | 230 | 230 | 230 | 230 | |
R2 | 0.528 | 0.875 | 0.875 | 0.888 | 0.891 | 0.952 | |
ΔR2 | 0.528 | 0.347 | 0.000 | 0.013 | 0.002 | 0.061 | |
纳木错站 | Ta | 0.092***(0.835) | 0.066***(0.599) | 0.035***(0.320) | - | - | - |
Rn | - | 0.054***(0.328) | 0.047***(0.289) | - | - | - | |
LAI | - | - | 0.590***(0.405) | - | - | - | |
Constant | 1.495 | 1.123 | 0.597 | - | - | - | |
N | 230 | 230 | 230 | - | - | - | |
R2 | 0.697 | 0.748 | 0.818 | - | - | - | |
ΔR2 | 0.697 | 0.052 | 0.069 | - | - | - | |
藏东南站 | PAR | 0.117***(0.787) | 0.074***(0.497) | 0.048***(0.320) | 0.028**(0.190) | - | - |
Ta | - | 0.066***(0.440) | 0.054***(0.359) | -0.008(-0.056) | - | - | |
VPD | - | - | 4.196***(0.326) | 5.092***(0.396) | - | - | |
LAI | - | - | - | 0.043***(0.496) | - | - | |
Constant | -1.177 | -0.388 | -0.589 | -1.275 | - | - | |
N | 138 | 138 | 138 | 138 | - | - | |
R2 | 0.619 | 0.729 | 0.779 | 0.807 | - | - | |
ΔR2 | 0.619 | 0.110 | 0.050 | 0.029 | - | - |
[1] |
Qiu J. China: The third pole[J]. Nature News, 2008, 454(7203): 393-396.
doi: 10.1038/454393a |
[2] |
Ma N, Zhang Y S, Guo Y H, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992.
doi: 10.1016/j.jhydrol.2015.09.013 |
[3] |
Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: I. Principles and observations[J]. Geography Compass, 2009, 3(2): 746-760.
doi: 10.1111/j.1749-8198.2008.00213.x |
[4] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
doi: 10.1016/j.gloplacha.2013.12.001 |
[5] | 蓝永超, 丁永建, 沈永平, 等. 气候变化对黄河上游水资源系统影响的研究进展[J]. 气候变化研究进展, 2005, 1(3): 122-125. |
[Lan Yongchao, Ding Yongjian, Shen Yongping, et al. Review on impact of climate change on water resources system in the upper reaches of Yellow River[J]. Advances in Climate Change Research, 2005, 1(3): 122-125.] | |
[6] |
Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
doi: 10.1126/science.1128845 pmid: 16931749 |
[7] |
Yang Y T, Long D, Shang S H. Remote estimation of terrestrial evapotranspiration without using meteorological data[J]. Geophysical Research Letters, 2013, 40(12): 3026-3030.
doi: 10.1002/grl.50450 |
[8] |
Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland[J]. Water Resources Research, 1993, 29(5): 1379-1392.
doi: 10.1029/93WR00333 |
[9] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001 |
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001 |
|
[10] | 李红霞, 张永强, 张新华, 等. 遥感Penman-Monteith模型对区域蒸散发的估算[J]. 武汉大学学报, 2011, 44(4): 457-461. |
[Li Hongxia, Zhang Yongqiang, Zhang Xinhua, et al. Estimation of regional transpiration and evaporation using Penman-Monteith equation[J]. Engineering Journal of Wuhan University, 2011, 44(4): 457-461.] | |
[11] | 杨文峰, 李星敏, 卢玲. 基于能量平衡的蒸散遥感估算模型的应用研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 46-52. |
[Yang Wenfeng, Li Xingmin, Lu Ling. Application of remote sensing model based on energy balance to estimate evapotranspiration[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 46-52.] | |
[12] | 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938.] | |
[13] | 史继清, 边多, 杨霏云, 等. 西藏地区潜在蒸散量变化特征及灰色模型预测初探[J]. 干旱区地理, 2021, 44(6): 1570-1579. |
[Shi Jiqing, Bian Duo, Yang Feiyun, et al. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet[J]. Arid Land Geography, 2021, 44(6): 1570-1579.] | |
[14] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017 |
[15] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019 |
[16] |
Velpuri N M, Senay G B, Singh R K, et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment, 2013, 139: 35-49.
doi: 10.1016/j.rse.2013.07.013 |
[17] |
尹剑, 欧照凡, 付强, 等. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018, 38(3): 448-456.
doi: 10.13249/j.cnki.sgs.2018.03.015 |
[Yin Jian, Ou Zhaofan, Fu Qiang, et al. Review of current methodologies for regional evapotranspiration estimation: Inversion and data assimilation[J]. Scientia Geographica Sinica, 2018, 38(3): 448-456.]
doi: 10.13249/j.cnki.sgs.2018.03.015 |
|
[18] | 李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358. |
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Resarch, 2021, 38(2): 351-358.] | |
[19] |
赵燊, 陈少辉. 基于台站和MOD16数据的山东省蒸散及潜在蒸散时空变化[J]. 地理科学进展, 2017, 36(8): 1040-1047.
doi: 10.18306/dlkxjz.2017.08.013 |
[Zhao Shen, Chen Shaohui. Spatiotemporal variations of evapotranspiration and potential evapotranspiration in Shandong Province based on station observations and MOD16[J]. Progress in Geography, 2017, 36(8): 1040-1047.]
doi: 10.18306/dlkxjz.2017.08.013 |
|
[20] |
Shuttleworth W J, Wallace J S. Evaporation from sparse crops: An energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.
doi: 10.1002/qj.49711146910 |
[21] | Ortega-Farias S, Poblete-Echeverría C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural & Forest Meteorology, 2010, 150(2): 276-286. |
[22] | Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural & Forest Meteorology, 2008, 148(10): 1629-1640. |
[23] |
Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model[J]. Agricultural Water Management, 2004, 65(3): 173-191.
doi: 10.1016/j.agwat.2003.10.001 |
[24] |
Brisson N, Itier B, L’Hotel J C, et al. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models[J]. Ecological Modelling, 1998, 107(2-3): 159-169.
doi: 10.1016/S0304-3800(97)00215-9 |
[25] |
Hu Z M, Li S G, Yu G R, et al. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model[J]. Journal of Hydrology, 2013, 501: 186-192.
doi: 10.1016/j.jhydrol.2013.08.006 |
[26] | Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural & Forest Meteorology, 2009, 149(9): 1410-1420. |
[27] |
吴戈男, 胡中民, 李胜功, 等. SWH双源蒸散模型模拟效果验证及不确定性分析[J]. 地理学报, 2016, 71(11): 1886-1897.
doi: 10.11821/dlxb201611002 |
[Wu Genan, Hu Zhongmin, Li Shenggong, et al. Evaluation and uncertainty analysis of a two-source evapotranspiration model[J]. Acta Geographica Sinica, 2016, 71(11): 1886-1897.]
doi: 10.11821/dlxb201611002 |
|
[28] |
Jiang Z Y, Yang Z G, Zhang S Y, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262: 110310, doi: 10.1016/j.jenvman.2020.110310.
doi: 10.1016/j.jenvman.2020.110310 |
[29] | 马耀明. 青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005—2016)[DB/OL].[2022-04-18]. 国家青藏高原科学数据中心. |
[Ma Yaoming. A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau (2005—2016)[DB/OL].[2022-04-18]. National Tibetan Plateau Data Center.] | |
[30] |
Hu Z M, Wu G N, Zhang L X, et al. Modeling and partitioning of regional evapotranspiration using a satellite-driven water-carbon coupling model[J]. Remote Sensing, 2017, 9(1): 54, doi: 10.3390/rs9010054.
doi: 10.3390/rs9010054 |
[31] |
Li M S, Babel W, Chen X L, et al. A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements[J]. Theoretical and Applied Climatology, 2015, 122(3-4): 457-469.
doi: 10.1007/s00704-014-1302-0 |
[32] |
Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52-58.
doi: 10.1038/nclimate1633 |
[33] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226(6): 1550-1566.
doi: 10.1111/nph.16485 pmid: 32064613 |
[34] | 张亚春, 马耀明, 马伟强, 等. 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 2021, 39(3): 366-373. |
[Zhang Yachun, Ma Yaoming, Ma Weiqiang, et al. Evapotranspiration variation and its correlation with meteorological factors on different underlying surfaces of the Tibetan Plateau[J]. Journal of Arid Meteorology, 2021, 39(3): 366-373.] | |
[35] |
Ma N, Zhang Y Q. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural & Forest Meteorology, 2022, 317: 108887, doi: 10.1016/j.agrformet.2022.108887.
doi: 10.1016/j.agrformet.2022.108887 |
[36] |
Wang W G, Li J X, Yu Z B, et al. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying[J]. Journal of Hydrology, 2018, 559: 471-485.
doi: 10.1016/j.jhydrol.2018.02.065 |
[37] | Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning[J]. Agricultural & Forest Meteorology, 2014, 184: 56-70. |
[38] |
Zhao J F, Li C, Yang T Y, et al. Estimation of high spatiotemporal resolution actual evapotranspiration by combining the SWH model with the METRIC model[J]. Journal of Hydrology, 2020, 586: 124883, doi: 10.1016/j.jhydrol.2020.124883.
doi: 10.1016/j.jhydrol.2020.124883 |
[1] | LI Hongyang, CHEN Tianyu, WANG Shengjie, ZHANG Mingjun. Spatiotemporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021 [J]. Arid Land Geography, 2024, 47(9): 1443-1450. |
[2] | LIU Yu, MEI Hua, FAN Wenbo, REN Congzhe, WANG Shiwei, LI Shunshun. Temporal and spatial characteristics of drought in the Ta’e Basin from 1992 to 2022 based on the SPEI index [J]. Arid Land Geography, 2024, 47(8): 1338-1347. |
[3] | MA Honglu, QI Donglin, ZHAO Tong, CAO Xiaoyun, ZHAO Quanning, ZHANG Rui. Variation characteristics and influencing factors of air negative ion concentration in summer residential areas of Xining City [J]. Arid Land Geography, 2024, 47(8): 1358-1366. |
[4] | MA Yali, NIU Zuirong, SUN Dongyuan. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in the Hexi Corridor [J]. Arid Land Geography, 2024, 47(2): 192-202. |
[5] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[6] | WEI Tao, WANG Yunquan. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product [J]. Arid Land Geography, 2023, 46(6): 857-867. |
[7] | YANG Yifei, YANG Pengnian, WANG Changshu, KOU Xin, TAN Fan, XU Jie, WANG Cui. Effectiveness evaluation of water consumption in agricultural land of Yanqi Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(5): 730-741. |
[8] | CAO Yujuan, SI Wenyang, DU Ziqiang, LIANG Hanxue, LEI Tianjie, SUN Bin, WU Zhitao. Changes in GPP of China during the typical drought years from 1982 to 2017 [J]. Arid Land Geography, 2023, 46(10): 1577-1590. |
[9] | HE Xugang, Mamat SAWUT, SHENG Yanfang, LI Rongpeng. Remote sensing estimation of cotton water productivity in Ugan-Kuqa River Oasis based on Google Earth Engine [J]. Arid Land Geography, 2023, 46(10): 1632-1642. |
[10] | SHI Wanpeng, LI Bei, LIU Jingtao, ZHUO Zijun, CHEN Xi. Formation characteristics and factors effecting of condensation waterin surface soil in Hoh Xil area [J]. Arid Land Geography, 2022, 45(6): 1729-1739. |
[11] | FU Yinghao, SHEN Xiaojing, LI Wangcheng, WU Xu, ZHANG Qingqing. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction [J]. Arid Land Geography, 2022, 45(6): 1752-1760. |
[12] | HAN Rucun,ZHANG Ying,LI Zhanling. Effects of two uncertainty sources on drought index of SPEI and on drought assessment [J]. Arid Land Geography, 2022, 45(5): 1392-1401. |
[13] | HAN Dianchen,ZHANG Fangmin,CHEN Jiquan,LI Yunpeng,LU Qi,LU Yanyu. Evapotranspiration of a semi-arid landscape in Inner Mongolia: Estimation and attribution [J]. Arid Land Geography, 2022, 45(4): 1071-1081. |
[14] | SHI Jiqing,BIAN Duo,YANG Feiyun,GAN Chenlong,FAN Dongliang. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet [J]. Arid Land Geography, 2021, 44(6): 1570-1579. |
[15] | ZHANG Tiaofeng,YANG Zhaoming,WEN Tingting,LAI Xiaoling,MA Youxuan. Characteristics and influencing factors of persistent low temperature events in northeast Qinghai-Tibet Plateau [J]. Arid Land Geography, 2021, 44(4): 897-905. |
|