Arid Land Geography ›› 2024, Vol. 47 ›› Issue (9): 1443-1450.doi: 10.12118/j.issn.1000-6060.2024.107
• The Third Xinjiang Scientific Expedition • Previous Articles Next Articles
LI Hongyang1(), CHEN Tianyu2, WANG Shengjie1(), ZHANG Mingjun1
Received:
2024-02-23
Revised:
2024-05-08
Online:
2024-09-25
Published:
2024-09-24
Contact:
WANG Shengjie
E-mail:hongyangli2022@163.com;geowang@126.com
LI Hongyang, CHEN Tianyu, WANG Shengjie, ZHANG Mingjun. Spatiotemporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021[J].Arid Land Geography, 2024, 47(9): 1443-1450.
Tab. 1
Long-term mean and linear trend of potential evapotranspiration in various drainage basins on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021"
流域 | 年均潜在蒸散 /mm | 潜在蒸散线性变化率/mm·(10a)-1 |
---|---|---|
喀什噶尔河流域 | 715.8 | 16.5 |
叶尔羌河流域 | 700.2 | 10.3 |
和田河流域 | 701.9 | 4.9 |
克里雅河流域 | 704.3 | 5.0 |
车尔臣河流域 | 810.8 | 11.4 |
库木库里盆地 | 719.8 | 7.8 |
[1] | Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318): 951-954. |
[2] |
Zhao L L, Xia J, Xu C Y, et al. Evapotranspiration estimation methods in hydrological models[J]. Journal of Geographical Sciences, 2013, 23(2): 359-369.
doi: 10.1007/s11442-013-1015-9 |
[3] | Adeyeri O E, Ishola K A. Variability and trends of actual evapotranspiration over west Africa: The role of environmental drivers[J]. Agricultural and Forest Meteorology, 2021, 308: 108574, doi: 10.1016/j.agrformet.2021.108574. |
[4] | Voigt A, Shaw T A. Circulation response to warming shaped by radiative changes of clouds and water vapour[J]. Nature Geoscience, 2015, 8(2): 102-106. |
[5] | Pascolini-Campbell M, Reager J T, Chandanpurkar H A, et al. A 10% increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 2021, 593(7860): 543-547. |
[6] | Xu S Q, Yu Z B, Yang C G, et al. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin[J]. Agricultural and Forest Meteorology, 2018, 263: 118-129. |
[7] | Zhao Y, Chen Y N, Wu C Y, et al. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China[J]. Journal of Hydrology, 2023, 626: 130222, doi: 10.1016/j.jhydrol.2023.130222. |
[8] |
Milly P C D, Dunne K A. Potential evapotranspiration and continental drying[J]. Nature Climate Change, 2016, 6(10): 946-949.
doi: 10.1038/NCLIMATE3046 |
[9] | Valipour M. Analysis of potential evapotranspiration using limited weather data[J]. Applied Water Science, 2017, 7(1): 187-197. |
[10] |
张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1295-1307.
doi: 10.11867/j.issn.1001-8166.2012.12.1295 |
[Zhang Ronghua, Du Junping, Sun Rui. Review of estimation and validation of regional evapotranspiration based on remote sensing[J]. Advance in Earth Sciences, 2012, 27(12): 1295-1307.] | |
[11] |
马亚丽, 牛最荣, 孙栋元. 河西走廊潜在蒸散发时空格局变化与气象因素的关系[J]. 干旱区地理, 2024, 47(2): 192-202.
doi: 10.12118/j.issn.1000-6060.2023.108 |
[Ma Yali, Niu Zuirong, Sun Dongyuan. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in Hexi Corridor[J]. Arid Land Geography, 2024, 47(2): 192-202.]
doi: 10.12118/j.issn.1000-6060.2023.108 |
|
[12] | Gu L L, Hu Z Y, Yao J M, et al. Actual and reference evapotranspiration in a cornfield in the Zhangye oasis, northwestern China[J]. Water, 2017, 9(7): 499, doi: 10.3390/w9070499. |
[13] | Hu J H, Che T, Sun H R, et al. Numerical modeling and simulation of thermo-hydrologic processes in frozen soils on the Qinghai-Tibet Plateau[J]. Journal of Hydrology: Regional Studies, 2022, 40: 101050, doi: 10.1016/j.ejrh.2022.101050. |
[14] | Huang Q, Long D, Du M D, et al. An improved approach to monitoring Brahmaputra River water levels using retracked altimetry data[J]. Remote Sensing of Environment, 2018, 211: 112-128. |
[15] | Krause P, Biskop S, Helmschrot J, et al. Hydrological system analysis and modelling of the Nam Co Basin in Tibet[J]. Advances in Geosciences, 2010, 27: 29-36. |
[16] |
Ding Y J, Zhang S Q, Zhao L, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4): 245-253.
doi: 10.1016/j.scib.2018.12.028 pmid: 36659714 |
[17] |
Liu Y, Chen H O, Zhang G Q, et al. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau[J]. Science Bulletin, 2019, 64(20): 1486-1489.
doi: 10.1016/j.scib.2019.08.011 pmid: 36659555 |
[18] | Chen S B, Liu Y F, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961—2000[J]. Climatic Change, 2006, 76(3-4): 291-319. |
[19] | 田露, 郭伟, 倪向南, 等. 青海湖地区潜在蒸散发变化特征及影响因子分析[J]. 地球环境学报, 2023, 14(3): 328-338. |
[Tian Lu, Guo Wei, Ni Xiangnan, et al. Analysis of potential evapotranspiration trends and its factors in Qinghai Lake area[J]. Journal of Earth Environment, 2023, 14(3): 328-338.] | |
[20] | Wen X H, Pan W Q, Sun X G, et al. Study on the variation trend of potential evapotranspiration in the Three-River Headwaters region in China over the past 20 years[J]. Frontiers in Earth Science, 2020, 8: 582742, doi: 10.3389/feart.2020.582742. |
[21] | Chen A F, Chen D L, Azorin-Molina C. Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets[J]. International Journal of Climatology, 2018, 38(11): 4314-4334. |
[22] | Liu J, Shangguan D H, Liu S Y, et al. Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981—2015[J]. Atmospheric Research, 2019, 230: 104634, doi: 10.1016/j.atmosres.2019.104634. |
[23] | 郑度. 喀喇昆仑山-昆仑山地区自然地理[M]. 北京: 科学出版社, 1999. |
[Zheng Du. Physical Geography of the Karakorum-Kunlun Mountains[M]. Beijing: Science Press, 1999.] | |
[24] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667. |
[25] | 李成秀, 杨太保, 田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报, 2015, 33(2): 157-165. |
[Li Chengxiu, Yang Taibao, Tian Hongzhen. Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976—2010[J]. Journal of Mountain Science, 2015, 33(2): 157-165.] | |
[26] | 李江风. 新疆气候[M]. 北京: 气象出版社, 1991. |
[Li Jiangfeng. Xinjing Climate[M]. Beijing: China Meteorological Press, 1991.] | |
[27] | 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987. |
[Zhang Jiabao, Deng Zifeng. Introduction to precipitation in Xinjiang[M]. Beijing: China Meteorological Press, 1987.] | |
[28] | Liu Z Q, Jiang L P, Shi C X, et al. CRA-40/Atmosphere: The first-generation Chinese atmospheric reanalysis (1979—2018): System description and performance evaluation[J]. Journal of Meteorological Research, 2023, 37(1): 1-19. |
[29] | Harris I, Osborn T J, Jones P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7(1): 109, doi: 10.1038/s41597-020-0453-3. |
[30] | Peng S Z, Ding Y X, Wen Z M, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011—2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183-194. |
[31] | 彭守璋. 中国1 km逐月潜在蒸散发数据集(1901—2022)[DB/OL]. [2024-02-23]. https://doi.org/10.11866/db.loess.2021.001. |
[Peng Shouzhang. 1 km monthly potential evapotranspiration dataset in China (1901—2022)[DB/OL]. [2024-02-23]. https://doi.org/10.11866/db.loess.2021.001.] | |
[32] | Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements: FAO irrigation and drainage paper 56[M]. Rome: Food and Agriculture Organization of the United Nations, 1998. |
[33] | 祝昌汉. 再论总辐射的气候学计算方法(二)[J]. 南京气象学院学报, 1982, 5(2): 196-206. |
[Zhu Changhan. A further discussion on the climatological calculation method of total radiation (Ⅱ)[J]. Journal of Nanjing Institute of Meteorology, 1982, 5(2): 196-206.] | |
[34] |
焦丹丹, 吉喜斌, 金博文, 等. 干旱气候条件下多种潜在蒸发量估算方法对比研究[J]. 高原气象, 2018, 37(4): 1002-1016.
doi: 10.7522/j.issn.1000-0534.2018.00048 |
[Jiao Dandan, Ji Xibin, Jin Bowen, et al. Comparison of different methods for estimating potential evaporation in an arid environment[J]. Plateau Meteorology, 2018, 37(4): 1002-1016.]
doi: 10.7522/j.issn.1000-0534.2018.00048 |
|
[35] | Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196. |
[36] | Lorenz E N. Statistical forecasting program: Empirical orthogonal functions and statistical weather prediction[J]. Scientific Reports, 1956, 409: 997-999. |
[37] | Huntington T G. Evidence for intensification of the global water cycle: Review and synthesis[J]. Journal of Hydrology, 2006, 319(1-4): 83-95. |
[38] |
卢冬燕, 朱秀芳, 刘婷婷, 等. 2 ℃温升情景下中国气象干旱特征变化[J]. 干旱区地理, 2023, 46(8): 1227-1237.
doi: 10.12118/j.issn.1000-6060.2022.546 |
[Lu Dongyan, Zhu Xiufang, Liu Tingting, et al. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario[J]. Arid Land Geography, 2023, 46(8): 1227-1237.]
doi: 10.12118/j.issn.1000-6060.2022.546 |
|
[39] | Qin D Y, Lü J Y, Liu J H, et al. Theories and calculation methods for regional objective ET[J]. Chinese Science Bulletin, 2009, 54(1): 150-157. |
[40] | Yin Y H, Wu S H, Chen G, et al. Attribution analyses of potential evapotranspiration changes in China since the 1960s[J]. Theoretical and Applied Climatology, 2010, 101: 19-28. |
|