Arid Land Geography ›› 2023, Vol. 46 ›› Issue (10): 1632-1642.doi: 10.12118/j.issn.1000-6060.2022.616
• Biology and Pedology • Previous Articles Next Articles
HE Xugang1,2,3(),Mamat SAWUT1,2,3(),SHENG Yanfang1,2,3,LI Rongpeng1,2,3
Received:
2022-11-21
Revised:
2022-12-22
Online:
2023-10-25
Published:
2023-11-10
HE Xugang, Mamat SAWUT, SHENG Yanfang, LI Rongpeng. Remote sensing estimation of cotton water productivity in Ugan-Kuqa River Oasis based on Google Earth Engine[J].Arid Land Geography, 2023, 46(10): 1632-1642.
Tab. 1
List of the data used in this study"
名称 | 空间分 辨率/m | 波段 数量 | 成像时间(年-月-日) | 影像 数量 |
---|---|---|---|---|
Landsat_8 | 30 | 13 | 2013-06-23、2014-07-08 2015-07-15、2016-07-17 2017-07-04、2018-07-23 2019-07-26、2019-04-05 2020-05-25、2020-06-26 2020-07-28、2020-08-29 2020-09-14、2020-10-16 | 14 |
Landsat_5 | 30 | 13 | 2008-05-08、2008-06-09 2009-04-25、2009-07-14 2010-08-31、2009-09-31 2009-10-18、2010-07-17 2011-07-04 | 9 |
Landsat_7 | 30 | 11 | 2012-05-11、2012-07-14 | 2 |
[1] | 新华网. 新疆棉花产量占全国90.2%创历史新高[EB/OL]. http://www.news.cn/local/2022-12/27/c_1129236779.htm. 2022-12-27. |
[Xinhua Net. Xinjiang’s cotton production accounts for 90.2% of the country’s total, a record high[EB/OL]. http://www.news.cn/local/2022-12/27/c_1129236779.htm. 2022-12-27. ] | |
[2] |
胡栩, 聂勇, 徐霞, 等. 塔里木盆地南缘和田地区土地利用变化的遥感研究[J]. 地理科学进展, 2020, 39(4): 577-590.
doi: 10.18306/dlkxjz.2020.04.005 |
[Hu Xu, Nie Yong, Xu Xia, et al. Monitoring land-use change in Hetian Tarim Basin, China using satellite remote sensing observation between 1990 and 2016[J]. Progress in Geography, 2020, 39(4): 577-590. ]
doi: 10.18306/dlkxjz.2020.04.005 |
|
[3] |
张沛, 龙爱华, 海洋, 等. 1988—2015年新疆农业用水时空变化与政策驱动研究——基于农作物水足迹的统计分析[J]. 冰川冻土, 2021, 43(1): 242-253.
doi: 10.7522/j.issn.1000-0240.2018.1058 |
[Zang Pei, Long Aihua, Hai Yang, et al. Spatiotemporal variations and driving forces of agricultural water consumption in Xinjiang during 1988—2015: Based on statistical analysis of crop water footprint[J]. Journal of Glaciology and Geocryology, 2021, 43(1): 242-253. ]
doi: 10.7522/j.issn.1000-0240.2018.1058 |
|
[4] | 崔远来, 熊佳. 灌溉水利用效率指标研究进展[J]. 水科学进展, 2009, 20(4): 590-598. |
[Cui Yuanlai, Xiong Jia. Advances in assessment indicators of irrigation water use efficiency[J]. Advances in Water Science, 2009, 20(4): 590-598. ] | |
[5] |
陈仲新, 郝鹏宇, 刘佳, 等. 农业遥感卫星发展现状及我国监测需求分析[J]. 智慧农业, 2019, 1(1): 32-42.
doi: 10.12133/j.smartag.2019.1.1.201901-SA003 |
[Chen Zhongxin, Hao Pengyu, Liu Jia. et al. Technical demands for agricultural remote sensing satellites in China[J]. Smart Agriculture, 2019, 1(1): 32-42. ]
doi: 10.12133/j.smartag.2019.1.1.201901-SA003 |
|
[6] | 周柳萍. 基于遥感和气象数据的江苏省水稻水分生产率时空变化研究[D]. 杭州: 浙江大学, 2015. |
[Zhou Liuping. Study on temporal and spatial variation of rice water productivity of Jiangsu Province based on remote sensing and meteorological data[D]. Hangzhou: Zhejiang University, 2015. ] | |
[7] | 蒋磊, 杨雨亭, 尚松浩. 基于遥感蒸发模型的干旱区灌区灌溉效率评价[J]. 农业工程学报, 2013, 29(20): 95-101. |
[Jiang Lei, Yang Yuting, Shang Songhao. Evaluation on irrigation efficiency of irrigation district in arid region based on evapotranspiration estimated from remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(20): 95-101. ] | |
[8] | 杨建莹. 基于SEBAL模型的黄淮海冬小麦和夏玉米水分生产力研究[D]. 北京: 中国农业科学院, 2014. |
[Yang Jianying. Study on water productivity of winter wheat and summer maize based on SEBAL model in Huang-Huai-Hai Plain, China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ] | |
[9] |
Waldhoff G, Lussem U, Bareth G. Multi-data approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 61: 55-69.
doi: 10.1016/j.jag.2017.04.009 |
[10] | Zhou Q, Zhang Y L, Wu F. Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China[J]. Agricultural Water Management, 2021, 246: 106671, doi: org/10.1016/j.agwat.2020.106671. |
[11] |
Ghorbanpour A K, Kisekka I, Afshar A, et al. Crop water productivity mapping and benchmarking using remote sensing and Google Earth Engine cloud computing[J]. Remote Sensing, 2022, 14(19): 4934-4934.
doi: 10.3390/rs14194934 |
[12] | Mauget S, Ulloa M, Mitchell-McCallister D. Simulated irrigation water productivity and related profit effects in US Southern High Plains cotton production[J]. Agricultural Water Management, 2022, 266: 107582, doi: 10.1016/j.agwat.2022.107582. |
[13] | Chen X P, Qi Z M, Gui D W, et al. Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate[J]. Agricultural Water Management, 2020, 234: 106139, doi: 10.1016/j.agwat.2020.106139. |
[14] | Thorp K R, Thompson A L, Bronson K F. Irrigation rate and timing effects on Arizona cotton yield, water productivity, and fiber quality[J]. Agricultural Water Management, 2020, 234: 106146, doi:10.1016/j.agwat.2020.106146. |
[15] | Himanshu S K, Fan Y, Ale S, et al. Simulated efficient growth-stage-based deficit irrigation strategies for maximizing cotton yield, crop water productivity and net returns[J]. Agricultural Water Management, 2021, 250: 106840, doi: 10.1016/j.agwat.2021.106840. |
[16] | 柯映明. 近60年来渭干河流域耕地与胡杨的时空演变分析[D]. 北京: 中国科学院, 2020. |
[Ke Yingming. Spatiotemporal evolution analysis of cropland and Populus euphratica in Weigan River Basin in recent 60 years[D]. Beijing: University of Chinese Academy of Sciences, 2020. ] | |
[17] | 张新焕, 杨德刚, 刘云同. 基于能值的绿洲种植业系统可持续性及敏感性评价——以新疆渭干河流域为例[J]. 生态学报, 2009, 29(11): 6068-6076. |
[Zhang Xinhuan, Yang Degang, Liu Yuntong. Emergy-based sustainability and sensitivity analysis of oasis cropping system: A case study in Weigan River Basin[J]. Acta Ecologica Sinica, 2009, 29(11): 6068-6076. ] | |
[18] | Paul M, Rajib A, Negahban-Azar M, et al. Improved agricultural water management in data-scarce semi-arid watersheds: Value of integrating remotely sensed leaf area index in hydrological modeling[J]. Science of the Total Environment, 2021, 791: 148177, doi: 10.1016/j.scitotenv.2021.148177. |
[19] |
赵文亮, 贺振, 贺俊平, 等. 基于MODIS-NDVI的河南省冬小麦产量遥感估测[J]. 地理研究, 2012, 31(12): 2310-2320.
doi: 10.11821/yj2012120018 |
[Zhao Wenliang, He Zhen, He Junping, et al. Remote sensing estimation for winter wheat yield in Henan based on the MODIS-NDVI data[J]. Geographical Research, 2012, 31(12): 2310-2320. ]
doi: 10.11821/yj2012120018 |
|
[20] | 王文静, 张霞, 赵银娣, 等. 综合多特征的Landsat 8时序遥感图像棉花分类方法[J]. 遥感学报, 2017, 21(1): 115-124. |
[Wang Wenjing, Zhang Xia, Zhao Yindi, et al. Cotton extraction method of integrated multi-features based on multi-temporal Landsat 8 images[J]. Journal of Remote Sensing, 2017, 21(1): 115-124. ] | |
[21] | 田艳君, 石莹, 帅艳民, 等. 基于遥感时序特征的地表覆被信息提取[J]. 干旱区地理, 2021, 44(2): 450-459. |
[Tian Yanjun, Shi Ying, Shuai Yanmin, et al. Land cover information retrieval from temporal features based remote sensing images[J]. Arid Land Geography, 2021, 44(2): 450-459. ] | |
[22] | 刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J]. 武汉大学学报(信息科学版), 2020, 45(2): 265-272. |
[Liu Yating, Gong Yan, Duan Bo, et al. Combining multi-temporal NDVI and abundance from UAV remote sensing data for oilseed rape growth monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 265-272. ] | |
[23] | 刘焕军, 孟令华, 张新乐, 等. 基于时间序列Landsat影像的棉花估产模型[J]. 农业工程学报, 2015, 31(17): 215-220. |
[Liu Huanjun, Meng Linghua, Zhang Xinle, et al. Estimation model of cotton yield with time series Landsat images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 215-220. ] | |
[24] | 高中灵, 徐新刚, 王纪华, 等. 基于时间序列NDVI相似性分析的棉花估产[J]. 农业工程学报, 2012, 28(2): 148-153. |
[Gao Zhongling, Xu Xingang, Wang Jihua, et al. Cotton yield estimation based on similarity analysis of time-series NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 148-153. ] | |
[25] |
Meng H L, Liu H J, Zhang X L, et al. Assessment of the effectiveness of spatiotemporal fusion of multi-source satellite images for cotton yield estimation[J]. Computers and Electronics in Agriculture, 2019, 162: 44-52.
doi: 10.1016/j.compag.2019.04.001 |
[26] | 刘峻明, 周舟, 和晓彤, 等. 频率直方图与植被指数结合的冬小麦遥感产量估测[J]. 农业工程学报, 2021, 37(23): 145-152. |
[Liu Junming, Zhou Zhou, He Xiaotong, et al. Estimating winter wheat yield under frequency histogram and vegetation index using remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 145-152. ] | |
[27] |
Cai X L, Sharma B R. Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic River Basin[J]. Agricultural Water Management, 2010, 97(2): 309-316.
doi: 10.1016/j.agwat.2009.09.021 |
[28] | Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation[J]. Journal of Hydrology, 1998, 212-213: 198-212. |
[29] | Bastiaanssen W G M, Ahmad M D, Chemin Y. Satellite surveillance of evaporative depletion across the Indus Basin[J]. Water Resources Research, 2002, 38(12): 9-1-9-9. |
[30] | 黄青, 王利民, 滕飞. 利用MODIS-NDVI数据提取新疆棉花播种面积信息及长势监测方法研究[J]. 干旱地区农业研究, 2011, 29(2): 213-217. |
[Huang Qing, Wang Limin, Teng Fei. MODIS-NDVI-based monitoring of cotton planting areas and growth condition in Xinjiang[J]. Agricultural Research in the Arid Areas, 2011, 29(2): 213-217. ] | |
[31] |
马春玥, 买买提·沙吾提, 姚杰, 等. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710.
doi: 10.11821/dlxb202008010 |
[Ma Chunyue, Sawut Mamat, Yao Jie, et al. Spatio-temporal changes of cotton production in China from 1950 to 2015[J]. Acta Geographica Sinice, 2020, 75(8): 1699-1710. ]
doi: 10.11821/dlxb202008010 |
|
[32] | 杨欢, 邓帆, 张佳华, 等. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215. |
[Yang Huan, Deng Fan, Zhang Jiahua, et al. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land and Resources, 2020, 32(3): 208-215. ] | |
[33] |
Xu C C, Zhang X C, Zhang J X, et al. Estimation of crop water requirement based on planting structure extraction from multi-temporal MODIS EVI[J]. Water Resources Management, 2021, 35: 2231-2247.
doi: 10.1007/s11269-021-02838-y |
[34] | 于兵. 作物水分生产率及种植适宜度的遥感评价方法[D]. 北京: 清华大学, 2019. |
[Yu Bing. Remote sensing based assessment method for crop water productivity and planting suitability[D]. Beijing: Tsinghua University, 2019. ] |
[1] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[2] | WEI Tao, WANG Yunquan. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product [J]. Arid Land Geography, 2023, 46(6): 857-867. |
[3] | YANG Yifei, YANG Pengnian, WANG Changshu, KOU Xin, TAN Fan, XU Jie, WANG Cui. Effectiveness evaluation of water consumption in agricultural land of Yanqi Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(5): 730-741. |
[4] | CAO Yujuan, SI Wenyang, DU Ziqiang, LIANG Hanxue, LEI Tianjie, SUN Bin, WU Zhitao. Changes in GPP of China during the typical drought years from 1982 to 2017 [J]. Arid Land Geography, 2023, 46(10): 1577-1590. |
[5] | MEI Jing, SUN Meiping, LI Lin. Variations of evapotranspiration and its components in alpine meadow on the Tibetan Plateau based on SWH model [J]. Arid Land Geography, 2022, 45(6): 1740-1751. |
[6] | FU Yinghao, SHEN Xiaojing, LI Wangcheng, WU Xu, ZHANG Qingqing. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction [J]. Arid Land Geography, 2022, 45(6): 1752-1760. |
[7] | HAN Rucun,ZHANG Ying,LI Zhanling. Effects of two uncertainty sources on drought index of SPEI and on drought assessment [J]. Arid Land Geography, 2022, 45(5): 1392-1401. |
[8] | HAN Dianchen,ZHANG Fangmin,CHEN Jiquan,LI Yunpeng,LU Qi,LU Yanyu. Evapotranspiration of a semi-arid landscape in Inner Mongolia: Estimation and attribution [J]. Arid Land Geography, 2022, 45(4): 1071-1081. |
[9] | PAN Zihao,YANG Shengtian,LOU Hezhen,YU Jingjie,WANG Zhongjing,ZHANG Jun. Remote sensing monitoring of ecological water conveyance and benefits evaluation of agricultural water-saving in arid basin without observation station [J]. Arid Land Geography, 2022, 45(3): 774-785. |
[10] | SHI Jiqing,BIAN Duo,YANG Feiyun,GAN Chenlong,FAN Dongliang. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet [J]. Arid Land Geography, 2021, 44(6): 1570-1579. |
[11] | GU Jiahe,XUE Huazhu,DONG Guotao,ZHOU Lijuan,LI Jingru,DANG Suzhen,LI Shangzhi. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin [J]. Arid Land Geography, 2021, 44(1): 158-167. |
[12] | NING Ya-zhou, ZHANG Fu-ping, FENG Qi, WEI Yong-fen, LI Ling, LIU Jie-yao, ZENG Pan-ru. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency [J]. Arid Land Geography, 2020, 43(4): 928-938. |
[13] | ZHANG Lu, ZHU Zhong-yuan, ZHANG Sheng-wei, WANG Hui-min, WANG Fei, XI Xiao-kang. Trends of potential evapotranspiration and surface wet conditions in the Xilin River Basin in recent 59 years [J]. Arid Land Geography, 2020, 43(4): 997-1003. |
[14] |
ZOU Lei, YU Jiang-you, XIA Jun, WANG Fei-yu.
Temporalspatial variation characteristics of droughtin the Weihe River Basin based on SPEI [J]. Arid Land Geography, 2020, 43(2): 329-338. |
[15] |
ZHAO Jian-ting, WANG Yan-jun, SU Bu-da, TAO Hui, JIANG Tong.
Spatiotemporal distributions of temperature,precipitation,evapotranspiration,and drought in the Indus River Basin [J]. Arid Land Geography, 2020, 43(2): 349-359. |
|