Arid Land Geography ›› 2022, Vol. 45 ›› Issue (5): 1392-1401.doi: 10.12118/j.issn.1000-6060.2021.552
• Climate Change • Previous Articles Next Articles
HAN Rucun1(),ZHANG Ying1,2,LI Zhanling1(
)
Received:
2021-11-22
Revised:
2022-03-17
Online:
2022-09-25
Published:
2022-10-20
Contact:
Zhanling LI
E-mail:2005190059@cugb.edu.cn;zhanling.li@cugb.edu.cn
HAN Rucun,ZHANG Ying,LI Zhanling. Effects of two uncertainty sources on drought index of SPEI and on drought assessment[J].Arid Land Geography, 2022, 45(5): 1392-1401.
Tab. 1
Basic information of the meteorological stations in the Heihe River Basin"
气象站点 | 纬度/N | 经度/E | 1960—2015年多年平均降水量/mm | 1960—2015年多年平均气温/℃ |
---|---|---|---|---|
祁连站 | 38°11′ | 100°15′ | 409 | 1.1 |
野牛沟站 | 38°25′ | 99°35′ | 418 | -2.8 |
托勒站 | 38°48′ | 98°25′ | 298 | -2.5 |
山丹站 | 38°48′ | 101°05′ | 201 | 6.6 |
张掖站 | 39°05′ | 100°17′ | 128 | 7.5 |
高台站 | 39°22′ | 99°50′ | 108 | 7.9 |
酒泉站 | 39°46′ | 98°29′ | 86 | 7.6 |
鼎新站 | 40°18′ | 99°31′ | 55 | 8.5 |
额济纳旗站 | 41°57′ | 101°04′ | 35 | 9.0 |
Tab. 3
Optimal values and 95% confidence intervals for the parameters of three-parameter (Log-Logistic) distribution"
气象站点 | 形状参数 | 尺度参数 | 位置参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最优值 | 95%置信区间 | 最优值 | 95%置信区间 | 最优值 | 95%置信区间 | ||||||
下限 | 上限 | 下限 | 上限 | 下限 | 上限 | ||||||
野牛沟站 | 0.02 | -0.18 | 0.21 | 34.79 | 27.11 | 42.37 | 68.96 | 51.86 | 85.52 | ||
酒泉站 | -0.17 | -0.39 | 0.03 | 25.50 | 19.65 | 31.70 | -538.05 | -550.86 | -525.16 | ||
额济纳旗站 | 0.04 | -0.15 | 0.24 | 27.61 | 21.48 | 33.83 | -704.63 | -716.91 | -691.00 |
[1] | 金令, 王永芳, 郭恩亮, 等. 基于SPEIbase v.2.6数据集的内蒙古旱灾危险性评价[J]. 干旱区地理, 2022, 45(3): 695-705. |
[Jin Ling, Wang Yongfang, Guo Enliang, et al. Evaluation of drought hazards in Inner Mongolia based on SPEIbase v.2.6 dataset[J]. Arid Land Geography, 2022, 45(3): 695-705. ] | |
[2] | 洪兴骏, 郭生练. 长江上游水文干旱评估及其不确定性分析[J]. 中国防汛抗旱, 2018, 28(10): 14-20. |
[Hong Xingjun, Guo Shenglian. Hydrological drought assessment and uncertainty analysis for the upper Yangtze River[J]. China Flood & Drought Management, 2018, 28(10): 14-20. ] | |
[3] | 张瑞涵, 王义民, 郭爱军. 样本不确定性对基于SPI干旱评估的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(11): 134-142, 154. |
[Zhang Ruihan, Wang Yimin, Guo Aijun. Impact of sample uncertainty on SPI index based drought evaluation[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(11): 134-142, 154. ] | |
[4] |
Guttman N B. Accepting the standardized precipitation index: A calculation algorithm[J]. Journal of the American Water Resources Association, 1999, 35(2): 311-322.
doi: 10.1111/j.1752-1688.1999.tb03592.x |
[5] |
洪兴骏, 郭生练, 周研来. 标准化降水指数SPI分布函数的适用性研究[J]. 水资源研究, 2013, 2(1): 33-41.
doi: 10.12677/JWRR.2013.21006 |
[Hong Xingjun, Guo Shenglian, Zhou Yanlai. Applicability of standardized precipitation index with alternative distribution functions[J]. Journal of Water Resources Research, 2013, 2(1): 33-41. ]
doi: 10.12677/JWRR.2013.21006 |
|
[6] | Sienz F, Bothe O, Fraedrich K. Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias[J]. Hydrology and Earth System Sciences, 2011, 8(6): 10635-10677. |
[7] | Gabriel C B, Monica C M. Inadequacy of the gamma distribution to calculate the standardized precipitation index[J]. Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi, 2015, 19(12): 1129-1135. |
[8] |
Stagge J H, Tallaksen L M, Gudmundsson L, et al. Candidate distributions for climatological drought indices (SPI and SPEI)[J]. International Journal of Climatology, 2015, 35(13): 4027-4040.
doi: 10.1002/joc.4267 |
[9] |
Begueria S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.
doi: 10.1002/joc.3887 |
[10] | 张经天, 席海洋. 荒漠河岸林地下水位时空动态及其对地表径流的响应[J]. 干旱区地理, 2020, 43(2): 388-397. |
[Zhang Jingtian, Xi Haiyang. Spatiotemporal dynamics of groundwater levels in a desert riparian forest and its response to surface runoff[J]. Arid Land Geography, 2020, 43(2): 388-397. ] | |
[11] | 任朝霞, 陆玉麒, 杨达源. 近2000年黑河流域旱涝变化研究[J]. 干旱区资源与环境, 2009, 23(4): 90-93. |
[Ren Chaoxia, Lu Yuqi, Yang Dayuan. Study on drought and flood changes in recent 2000 a in Heihe River Basin[J]. Journal of Arid Land Resources and Environment, 2009, 23(4): 90-93. ] | |
[12] | 曹玲, 窦永祥, 张德玉. 气候变化对黑河流域生态环境的影响[J]. 干旱气象, 2003, 21(4): 45-49. |
[Cao Ling, Dou Yongxiang, Zhang Deyu. Effect of climate change on ecological environment of Heihe Field[J]. Journal of Arid Meteorology, 2003, 21(4): 45-49. ] | |
[13] | 张莹. 两种典型气象干旱指数的不确定性分析——以黑河流域为例[D]. 北京: 中国地质大学(北京), 2020. |
[Zhang Ying. Uncertainty analysis of two typical meteorological drought indexes: A case study in Heihe River Basin[D]. Beijing: China University of Geosciences (Beijing), 2020. ] | |
[14] |
Feng Q, Cheng G D, Endo K N. Towards sustainable development of the environmentally degraded River Heihe Basin, China[J]. Hydrological Sciences Journal, 2001, 46(5): 647-658.
doi: 10.1080/02626660109492862 |
[15] | 刘浏, 刘丽丽, 索滢. 近53 a黑河流域水文气象要素时空演变特征[J]. 干旱区研究, 2017, 34(3): 465-478. |
[ Liu Liu, Liu Lili, Suo Ying. Spatiotemporal evolution of hydro-meteorological variables in the Heihe River Basin in recent 53 years[J]. Arid Zone Research, 2017, 34(3): 465-478. ] | |
[16] |
Vicente-Serrano S M, Begueria S, Lopezmoreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
doi: 10.1175/2009JCLI2909.1 |
[17] |
Yevjevich V. An objective approach to definitions and investigations of continental hydrologic droughts[J]. Journal of Hydrology, 1969, 7(3): 353, doi: 10.1016/0022-1694(69)90110-3.
doi: 10.1016/0022-1694(69)90110-3 |
[18] | Fadhilah Y, Foo H M, Jamaludin S. Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia[J]. Theoretical & Applied Climatology, 2014, 115(3-4): 503-516. |
[19] |
Nixon R M, Wonderling D, Grieve R D. Non-parametric methods for cost effectiveness analysis: The central limit theorem and the bootstrap compared[J]. Health Economics, 2010, 19(3): 316-333.
doi: 10.1002/hec.1477 |
[20] |
Degeling K, Ijzerman M J, Koopman M, et al. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models[J]. Bmc Medical Research Methodology, 2017, 17: 170, doi: 10.1186/s12874-017-0437-y.
doi: 10.1186/s12874-017-0437-y pmid: 29246192 |
[21] |
Vergni L, Di L B, Todisco F, et al. Uncertainty in drought monitoring by the standardized precipitation index: The case study of the Abruzzo region (central Italy)[J]. Theoretical and Applied Climatology, 2017, 128: 13-26.
doi: 10.1007/s00704-015-1685-6 |
[22] |
Laimighofer J, Laaha G. How standard are standardized drought indices? Uncertainty contributions for the SPI & SPEI case[J]. EGU General Assembly, 2020: EGU2020-4716, doi: 10.5194/egusphere-egu2020-4716.
doi: 10.5194/egusphere-egu2020-4716 |
[23] |
Zhang Y, Li Z. Uncertainty analysis of standardized precipitation index due to the effects of probability distributions and parameter errors[J]. Frontiers in Earth Science, 2020, 8: 76, doi: 10.3389/feart.2020.00076.
doi: 10.3389/feart.2020.00076 |
[24] |
Aadhar S, Mishra V. Increased drought risk in South Asia under warming climate: Implications of uncertainty in potential evapotranspiration estimates[J]. Journal of Hydrometeorology, 2020, 21(12): 2979-2996.
doi: 10.1175/JHM-D-19-0224.1 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 646
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 391
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|