Arid Land Geography ›› 2022, Vol. 45 ›› Issue (6): 1740-1751.doi: 10.12118/j.issn.1000-6060.2022.086
• Climatology and Hydrology • Previous Articles Next Articles
MEI Jing1(),SUN Meiping1,2(),LI Lin1
Received:
2022-03-07
Revised:
2022-05-18
Online:
2022-11-25
Published:
2023-02-01
Contact:
Meiping SUN
E-mail:mjing652016@163.com;sunmeiping1982@163.com
MEI Jing, SUN Meiping, LI Lin. Variations of evapotranspiration and its components in alpine meadow on the Tibetan Plateau based on SWH model[J].Arid Land Geography, 2022, 45(6): 1740-1751.
Tab. 1
Stratified regression of ET with each element"
站点 | 要素 | 模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 |
---|---|---|---|---|---|---|---|
那曲站 | PAR | 0.085***(0.726) | 0.002(0.019) | -0.000(0.000) | -0.017**(-0.146) | -0.011(-0.096) | -0.005(-0.042) |
Ta | - | 0.106***(0.920) | 0.105***(0.909) | 0.075***(0.655) | 0.073***(0.636) | 0.005(0.044) | |
VPD | - | - | 0.229(0.035) | 0.648*(0.097) | 0.905**(0.136) | 1.719***(0.259) | |
Rn | - | - | - | 0.082***(0.348) | 0.092***(0.390) | 0.085***(0.359) | |
G | - | - | - | - | -0.272*(-0.115) | 0.068(0.029) | |
LAI | - | - | - | - | - | 0.190***(0.485) | |
Constant | -1.369 | 1.158 | 1.153 | 0.965 | 0.634 | -0.237 | |
N | 230 | 230 | 230 | 230 | 230 | 230 | |
R2 | 0.528 | 0.875 | 0.875 | 0.888 | 0.891 | 0.952 | |
ΔR2 | 0.528 | 0.347 | 0.000 | 0.013 | 0.002 | 0.061 | |
纳木错站 | Ta | 0.092***(0.835) | 0.066***(0.599) | 0.035***(0.320) | - | - | - |
Rn | - | 0.054***(0.328) | 0.047***(0.289) | - | - | - | |
LAI | - | - | 0.590***(0.405) | - | - | - | |
Constant | 1.495 | 1.123 | 0.597 | - | - | - | |
N | 230 | 230 | 230 | - | - | - | |
R2 | 0.697 | 0.748 | 0.818 | - | - | - | |
ΔR2 | 0.697 | 0.052 | 0.069 | - | - | - | |
藏东南站 | PAR | 0.117***(0.787) | 0.074***(0.497) | 0.048***(0.320) | 0.028**(0.190) | - | - |
Ta | - | 0.066***(0.440) | 0.054***(0.359) | -0.008(-0.056) | - | - | |
VPD | - | - | 4.196***(0.326) | 5.092***(0.396) | - | - | |
LAI | - | - | - | 0.043***(0.496) | - | - | |
Constant | -1.177 | -0.388 | -0.589 | -1.275 | - | - | |
N | 138 | 138 | 138 | 138 | - | - | |
R2 | 0.619 | 0.729 | 0.779 | 0.807 | - | - | |
ΔR2 | 0.619 | 0.110 | 0.050 | 0.029 | - | - |
[1] |
Qiu J. China: The third pole[J]. Nature News, 2008, 454(7203): 393-396.
doi: 10.1038/454393a |
[2] |
Ma N, Zhang Y S, Guo Y H, et al. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe[J]. Journal of Hydrology, 2015, 529: 980-992.
doi: 10.1016/j.jhydrol.2015.09.013 |
[3] |
Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: I. Principles and observations[J]. Geography Compass, 2009, 3(2): 746-760.
doi: 10.1111/j.1749-8198.2008.00213.x |
[4] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
doi: 10.1016/j.gloplacha.2013.12.001 |
[5] | 蓝永超, 丁永建, 沈永平, 等. 气候变化对黄河上游水资源系统影响的研究进展[J]. 气候变化研究进展, 2005, 1(3): 122-125. |
[Lan Yongchao, Ding Yongjian, Shen Yongping, et al. Review on impact of climate change on water resources system in the upper reaches of Yellow River[J]. Advances in Climate Change Research, 2005, 1(3): 122-125.] | |
[6] |
Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.
doi: 10.1126/science.1128845 pmid: 16931749 |
[7] |
Yang Y T, Long D, Shang S H. Remote estimation of terrestrial evapotranspiration without using meteorological data[J]. Geophysical Research Letters, 2013, 40(12): 3026-3030.
doi: 10.1002/grl.50450 |
[8] |
Stannard D I. Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland[J]. Water Resources Research, 1993, 29(5): 1379-1392.
doi: 10.1029/93WR00333 |
[9] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001 |
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001 |
|
[10] | 李红霞, 张永强, 张新华, 等. 遥感Penman-Monteith模型对区域蒸散发的估算[J]. 武汉大学学报, 2011, 44(4): 457-461. |
[Li Hongxia, Zhang Yongqiang, Zhang Xinhua, et al. Estimation of regional transpiration and evaporation using Penman-Monteith equation[J]. Engineering Journal of Wuhan University, 2011, 44(4): 457-461.] | |
[11] | 杨文峰, 李星敏, 卢玲. 基于能量平衡的蒸散遥感估算模型的应用研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 46-52. |
[Yang Wenfeng, Li Xingmin, Lu Ling. Application of remote sensing model based on energy balance to estimate evapotranspiration[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 46-52.] | |
[12] | 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938.] | |
[13] | 史继清, 边多, 杨霏云, 等. 西藏地区潜在蒸散量变化特征及灰色模型预测初探[J]. 干旱区地理, 2021, 44(6): 1570-1579. |
[Shi Jiqing, Bian Duo, Yang Feiyun, et al. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet[J]. Arid Land Geography, 2021, 44(6): 1570-1579.] | |
[14] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017 |
[15] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019 |
[16] |
Velpuri N M, Senay G B, Singh R K, et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment, 2013, 139: 35-49.
doi: 10.1016/j.rse.2013.07.013 |
[17] |
尹剑, 欧照凡, 付强, 等. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018, 38(3): 448-456.
doi: 10.13249/j.cnki.sgs.2018.03.015 |
[Yin Jian, Ou Zhaofan, Fu Qiang, et al. Review of current methodologies for regional evapotranspiration estimation: Inversion and data assimilation[J]. Scientia Geographica Sinica, 2018, 38(3): 448-456.]
doi: 10.13249/j.cnki.sgs.2018.03.015 |
|
[18] | 李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358. |
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Resarch, 2021, 38(2): 351-358.] | |
[19] |
赵燊, 陈少辉. 基于台站和MOD16数据的山东省蒸散及潜在蒸散时空变化[J]. 地理科学进展, 2017, 36(8): 1040-1047.
doi: 10.18306/dlkxjz.2017.08.013 |
[Zhao Shen, Chen Shaohui. Spatiotemporal variations of evapotranspiration and potential evapotranspiration in Shandong Province based on station observations and MOD16[J]. Progress in Geography, 2017, 36(8): 1040-1047.]
doi: 10.18306/dlkxjz.2017.08.013 |
|
[20] |
Shuttleworth W J, Wallace J S. Evaporation from sparse crops: An energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.
doi: 10.1002/qj.49711146910 |
[21] | Ortega-Farias S, Poblete-Echeverría C, Brisson N. Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[J]. Agricultural & Forest Meteorology, 2010, 150(2): 276-286. |
[22] | Zhang B Z, Kang S Z, Li F S, et al. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[J]. Agricultural & Forest Meteorology, 2008, 148(10): 1629-1640. |
[23] |
Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model[J]. Agricultural Water Management, 2004, 65(3): 173-191.
doi: 10.1016/j.agwat.2003.10.001 |
[24] |
Brisson N, Itier B, L’Hotel J C, et al. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models[J]. Ecological Modelling, 1998, 107(2-3): 159-169.
doi: 10.1016/S0304-3800(97)00215-9 |
[25] |
Hu Z M, Li S G, Yu G R, et al. Modeling evapotranspiration by combing a two-source model, a leaf stomatal model, and a light-use efficiency model[J]. Journal of Hydrology, 2013, 501: 186-192.
doi: 10.1016/j.jhydrol.2013.08.006 |
[26] | Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model[J]. Agricultural & Forest Meteorology, 2009, 149(9): 1410-1420. |
[27] |
吴戈男, 胡中民, 李胜功, 等. SWH双源蒸散模型模拟效果验证及不确定性分析[J]. 地理学报, 2016, 71(11): 1886-1897.
doi: 10.11821/dlxb201611002 |
[Wu Genan, Hu Zhongmin, Li Shenggong, et al. Evaluation and uncertainty analysis of a two-source evapotranspiration model[J]. Acta Geographica Sinica, 2016, 71(11): 1886-1897.]
doi: 10.11821/dlxb201611002 |
|
[28] |
Jiang Z Y, Yang Z G, Zhang S Y, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262: 110310, doi: 10.1016/j.jenvman.2020.110310.
doi: 10.1016/j.jenvman.2020.110310 |
[29] | 马耀明. 青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005—2016)[DB/OL].[2022-04-18]. 国家青藏高原科学数据中心. |
[Ma Yaoming. A long-term dataset of integrated land-atmosphere interaction observations on the Tibetan Plateau (2005—2016)[DB/OL].[2022-04-18]. National Tibetan Plateau Data Center.] | |
[30] |
Hu Z M, Wu G N, Zhang L X, et al. Modeling and partitioning of regional evapotranspiration using a satellite-driven water-carbon coupling model[J]. Remote Sensing, 2017, 9(1): 54, doi: 10.3390/rs9010054.
doi: 10.3390/rs9010054 |
[31] |
Li M S, Babel W, Chen X L, et al. A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements[J]. Theoretical and Applied Climatology, 2015, 122(3-4): 457-469.
doi: 10.1007/s00704-014-1302-0 |
[32] |
Dai A. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1): 52-58.
doi: 10.1038/nclimate1633 |
[33] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226(6): 1550-1566.
doi: 10.1111/nph.16485 pmid: 32064613 |
[34] | 张亚春, 马耀明, 马伟强, 等. 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 2021, 39(3): 366-373. |
[Zhang Yachun, Ma Yaoming, Ma Weiqiang, et al. Evapotranspiration variation and its correlation with meteorological factors on different underlying surfaces of the Tibetan Plateau[J]. Journal of Arid Meteorology, 2021, 39(3): 366-373.] | |
[35] |
Ma N, Zhang Y Q. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J]. Agricultural & Forest Meteorology, 2022, 317: 108887, doi: 10.1016/j.agrformet.2022.108887.
doi: 10.1016/j.agrformet.2022.108887 |
[36] |
Wang W G, Li J X, Yu Z B, et al. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying[J]. Journal of Hydrology, 2018, 559: 471-485.
doi: 10.1016/j.jhydrol.2018.02.065 |
[37] | Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning[J]. Agricultural & Forest Meteorology, 2014, 184: 56-70. |
[38] |
Zhao J F, Li C, Yang T Y, et al. Estimation of high spatiotemporal resolution actual evapotranspiration by combining the SWH model with the METRIC model[J]. Journal of Hydrology, 2020, 586: 124883, doi: 10.1016/j.jhydrol.2020.124883.
doi: 10.1016/j.jhydrol.2020.124883 |
[1] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[2] | WEI Tao, WANG Yunquan. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product [J]. Arid Land Geography, 2023, 46(6): 857-867. |
[3] | YANG Yifei, YANG Pengnian, WANG Changshu, KOU Xin, TAN Fan, XU Jie, WANG Cui. Effectiveness evaluation of water consumption in agricultural land of Yanqi Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(5): 730-741. |
[4] | CAO Yujuan, SI Wenyang, DU Ziqiang, LIANG Hanxue, LEI Tianjie, SUN Bin, WU Zhitao. Changes in GPP of China during the typical drought years from 1982 to 2017 [J]. Arid Land Geography, 2023, 46(10): 1577-1590. |
[5] | HE Xugang, Mamat SAWUT, SHENG Yanfang, LI Rongpeng. Remote sensing estimation of cotton water productivity in Ugan-Kuqa River Oasis based on Google Earth Engine [J]. Arid Land Geography, 2023, 46(10): 1632-1642. |
[6] | SHI Wanpeng, LI Bei, LIU Jingtao, ZHUO Zijun, CHEN Xi. Formation characteristics and factors effecting of condensation waterin surface soil in Hoh Xil area [J]. Arid Land Geography, 2022, 45(6): 1729-1739. |
[7] | FU Yinghao, SHEN Xiaojing, LI Wangcheng, WU Xu, ZHANG Qingqing. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction [J]. Arid Land Geography, 2022, 45(6): 1752-1760. |
[8] | HAN Rucun,ZHANG Ying,LI Zhanling. Effects of two uncertainty sources on drought index of SPEI and on drought assessment [J]. Arid Land Geography, 2022, 45(5): 1392-1401. |
[9] | HAN Dianchen,ZHANG Fangmin,CHEN Jiquan,LI Yunpeng,LU Qi,LU Yanyu. Evapotranspiration of a semi-arid landscape in Inner Mongolia: Estimation and attribution [J]. Arid Land Geography, 2022, 45(4): 1071-1081. |
[10] | SHI Jiqing,BIAN Duo,YANG Feiyun,GAN Chenlong,FAN Dongliang. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet [J]. Arid Land Geography, 2021, 44(6): 1570-1579. |
[11] | ZHANG Tiaofeng,YANG Zhaoming,WEN Tingting,LAI Xiaoling,MA Youxuan. Characteristics and influencing factors of persistent low temperature events in northeast Qinghai-Tibet Plateau [J]. Arid Land Geography, 2021, 44(4): 897-905. |
[12] | GU Jiahe,XUE Huazhu,DONG Guotao,ZHOU Lijuan,LI Jingru,DANG Suzhen,LI Shangzhi. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin [J]. Arid Land Geography, 2021, 44(1): 158-167. |
[13] | NING Ya-zhou, ZHANG Fu-ping, FENG Qi, WEI Yong-fen, LI Ling, LIU Jie-yao, ZENG Pan-ru. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency [J]. Arid Land Geography, 2020, 43(4): 928-938. |
[14] | ZHANG Lu, ZHU Zhong-yuan, ZHANG Sheng-wei, WANG Hui-min, WANG Fei, XI Xiao-kang. Trends of potential evapotranspiration and surface wet conditions in the Xilin River Basin in recent 59 years [J]. Arid Land Geography, 2020, 43(4): 997-1003. |
[15] |
ZOU Lei, YU Jiang-you, XIA Jun, WANG Fei-yu.
Temporalspatial variation characteristics of droughtin the Weihe River Basin based on SPEI [J]. Arid Land Geography, 2020, 43(2): 329-338. |
|