Arid Land Geography ›› 2023, Vol. 46 ›› Issue (6): 857-867.doi: 10.12118/j.issn.1000-6060.2022.476
• Climate Change and Surface Process • Previous Articles Next Articles
Received:
2022-09-22
Revised:
2022-10-02
Online:
2023-06-25
Published:
2023-07-24
WEI Tao, WANG Yunquan. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product[J].Arid Land Geography, 2023, 46(6): 857-867.
Tab. 1
Basic information of flux site"
站点ID | 站点名 | 经度/(°) | 纬度/(°) | 土地覆盖类型 | 年份 |
---|---|---|---|---|---|
CN-Cha | 长白山 | 128.0958 | 42.4025 | 混生林 | 2003—2005 |
CN-Cng | 长岭 | 123.5092 | 44.5934 | 草地 | 2007—2010 |
CN-Dan | 当雄 | 91.0664 | 30.4978 | 草地 | 2004—2005 |
CN-Din | 鼎湖山 | 112.5361 | 23.1733 | 常绿阔叶林 | 2003—2005 |
CN-Du2 | 多伦草地 | 116.2836 | 42.0467 | 草地 | 2006—2008 |
CN-Du3 | 多伦退化草甸 | 116.2809 | 42.0551 | 草地 | 2009—2010 |
CN-Ha2 | 海北灌丛 | 101.3269 | 37.6086 | 湿地 | 2003—2005 |
CN-HaM | 西藏海北高山站 | 101.1800 | 37.3700 | 草地 | 2002—2004 |
CN-Qia | 千烟洲 | 115.0581 | 26.7414 | 常绿针叶林 | 2003—2005 |
Tab. 2
Analytical method"
方法 | 作用 |
---|---|
变异系数法 | 统计变量各组数据的变异程度,统计分析蒸散发在时间序列上的稳定性,变异系数的大小反应了像元各年份数据间的离散程度。 |
Theil-Sen Median趋势分析 | 稳健的非参数统计趋势计算方法,趋势值(β)大于0时,表示正增长趋势,小于0则表示下降趋势。 |
Mann-Kendall检验 | 非参数的时间序列趋势性检验方法。在给定显著性水平下,当M-K检验值(Z)的绝对值小于临界值时,即接受原假设,趋势不显著;当Z的绝对值大于临界值时,则拒绝原假设,趋势显著。 |
赫斯特指数 | 用来衡量时间序列是否有长期记忆的一个指标,赫斯特指数(H)位于0和1之间,当H为0.5时,序列是随机的,即没有自相关性;当H大于0.5时,序列有很强的正相关性,未来趋势与过去趋势一致;当H小于0.5时,序列有很强的负相关性,未来趋势与过去趋势相反。 |
Tab. 3
Statistical analysis of evapotranspiration in China from 2003 to 2020"
分区 | 面积/104 km2 | 最小值/mm·a-1 | 最大值/mm·a-1 | 均值/mm·a-1 | 标准差/mm·a-1 | 变异系数 |
---|---|---|---|---|---|---|
北温带区(I) | 18.73 | 38.02 | 716.72 | 107.47 | 24.50 | 0.23 |
中温带区(II) | 303.49 | 0.20 | 2205.41 | 180.85 | 108.76 | 0.60 |
南温带区(III) | 162.77 | 0.10 | 2466.08 | 259.15 | 215.44 | 0.83 |
北亚热带区(IV) | 56.76 | 0.20 | 2283.38 | 537.27 | 232.99 | 0.43 |
中亚热带区(V) | 120.64 | 0.20 | 2462.84 | 522.95 | 147.82 | 0.28 |
南亚热带区(VI) | 38.23 | 0.10 | 3422.79 | 719.66 | 179.79 | 0.25 |
北热带区(VII) | 7.60 | 0.20 | 3434.04 | 858.29 | 203.59 | 0.24 |
中热带区(VIII) | 0.91 | 1.01 | 3382.74 | 990.66 | 256.40 | 0.26 |
高原气候区(H) | 251.41 | 0.10 | 2288.14 | 278.22 | 207.24 | 0.74 |
Tab. 4
Statistical analysis of temporal variation coefficients of evapotranspiration in China from 2003 to 2020"
分区 | 面积/104 km2 | 最小值 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|---|
北温带区(I) | 18.73 | 0.09 | 1.28 | 0.37 | 0.16 |
中温带区(II) | 303.49 | 0.03 | 4.24 | 0.35 | 0.15 |
南温带区(III) | 162.77 | 0.03 | 4.24 | 0.38 | 0.35 |
北亚热带区(IV) | 56.76 | 0.00 | 4.24 | 0.13 | 0.06 |
中亚热带区(V) | 120.64 | 0.00 | 4.24 | 0.16 | 0.08 |
南亚热带区(VI) | 38.23 | 0.00 | 4.24 | 0.13 | 0.11 |
北热带区(VII) | 7.60 | 0.03 | 4.24 | 0.11 | 0.07 |
中热带区(VIII) | 0.91 | 0.03 | 4.24 | 0.09 | 0.21 |
高原气候区(H) | 251.41 | 0.03 | 4.24 | 0.34 | 0.22 |
Tab. 5
Fit regression coefficient"
分区 | 面积/104 km2 | B0 | B1 |
---|---|---|---|
北温带区(I) | 18.73 | -5517.40 | 2.80 |
中温带区(II) | 303.49 | 161.74 | 0.01 |
南温带区(III) | 162.77 | 1645.51 | -0.69 |
北亚热带区(IV) | 56.76 | -4028.99 | 2.27 |
中亚热带区(V) | 120.64 | -3788.96 | 2.14 |
南亚热带区(VI) | 38.23 | 464.99 | 0.13 |
北热带区(VII) | 7.60 | 310.23 | 0.27 |
中热带区(VIII) | 0.91 | -699.10 | 0.84 |
高原气候区(H) | 251.14 | -268.73 | 0.27 |
全区 | 961.63 | -1302.30 | 0.89 |
Tab. 6
Statistics of T-S analytical index and M-K analytical Z value of each zone in China"
分区 | T-S分析系数 | M-K分析Z值 | 双边检验可信度/% |
---|---|---|---|
北温带区(I) | 0.0055 | 1.54 | 87.64 |
中温带区(II) | -0.0007 | -0.03 | 2.40 |
南温带区(III) | -0.0020 | -0.40 | 31.82 |
北亚热带区(IV) | 0.0048 | 0.51 | 39.00 |
中亚热带区(V) | 0.0054 | 0.52 | 39.70 |
南亚热带区(VI) | -0.0001 | -0.02 | 1.60 |
北热带区(VII) | 0.0003 | 0.01 | 0.80 |
中热带区(VIII) | 0.0015 | 0.11 | 8.76 |
高原气候区(H) | 0.0003 | -0.02 | 1.60 |
[1] | 左大幸, 臧传富, 汪丽娜. 1980-2019年珠江流域潜在蒸发量时空变化及其影响因素分析[J]. 人民珠江, 2022, 43(10): 41-49. |
[Zuo Daxing, Zang Chuanfu, Wang Li'na. Temporal and spatial variation of potential evaporation and its influencing factors in Pearl River Basin from 1980 to 2019[J]. Pearl River, 2022, 43(10): 41-49.] | |
[2] | 张琨. 遥感蒸散发模型参数敏感性分析与优化方法研究[D]. 兰州: 兰州大学, 2018. |
[Zhang Kun. Parameter sensitivity analysis and optimization for remote sensing based evapotranspiration model[D]. Lanzhou: Lanzhou University, 2018.] | |
[3] |
Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800.
doi: 10.1016/j.rse.2011.02.019 |
[4] |
Zhang Y Q, Kong D D, Gan R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017[J]. Remote Sensing of Environment, 2019, 222: 165-182.
doi: 10.1016/j.rse.2018.12.031 |
[5] |
Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925.
doi: 10.5194/gmd-10-1903-2017 |
[6] |
刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588.
doi: 10.11821/xb201105001 |
[Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588.]
doi: 10.11821/xb201105001 |
|
[7] |
张巧凤, 刘桂香, 于红博, 等. 基于MOD16A2的锡林郭勒草原近14年的蒸散发时空动态[J]. 草地学报, 2016, 24(2): 286-293.
doi: 10.11733/j.issn.1007-0435.2016.02.007 |
[Zhang Qiaofeng, Liu Guixiang, Yu Hongbo, et al. Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol Steppe[J]. Acta Agrestia Sinica, 2016, 24(2): 286-293.]
doi: 10.11733/j.issn.1007-0435.2016.02.007 |
|
[8] | 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008. |
[Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008.] | |
[9] | 郑德凤, 詹诗瑶, 曹永强. 河北省潜在蒸散量与水分盈亏量时空动态特征分析[J]. 人民珠江, 2022, 43(3): 54-65. |
[Zheng Defeng, Zhan Shiyao, Cao Yongqiang. Analysis of spatiotemporal dynamic characteristics on potential evapotranspiration and water budget in Hebei Province[J]. Pearl River, 2022, 43(3): 54-65.] | |
[10] |
Pastorello G, Trotta C, Canfora E, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J]. Scientific Data, 2020, 7(1): 1-27.
doi: 10.1038/s41597-019-0340-y |
[11] | 朱炳海. 中国气候[M]. 北京: 科学出版社, 1962: 147-150. |
[Zhu Binghai. Climate of China[M]. Beijing: Science Press, 1962: 147-150.] | |
[12] |
Miralles D G, Holmes T R H, De Jeu R A M, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences, 2011, 15(2): 453-469.
doi: 10.5194/hess-15-453-2011 |
[13] |
Miralles D G, Van Den Berg M J, Gash J H, et al. El Niño-La Niña cycle and recent trends in continental evaporation[J]. Nature Climate Change, 2014, 4(2): 122-126.
doi: 10.1038/nclimate2068 |
[14] | Running S W, Mu Q Z, Zhao M S, et al. MODIS global terrestrial evapotranspiration (ET) product (MOD16A2/A3 and year-end gap-filled MOD16A2GF/A3GF) NASA Earth Observing System MODIS Land Algorithm (for collection 6)[M]. Washington, DC, USA: National Aeronautics and Space Administration, 2019: 1-37. |
[15] |
Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): RG2004, doi: 10.1029/2005RG000183.
doi: 10.1029/2005RG000183 |
[16] | 陈龙. 基于不同遥感数据估算全球陆地初级生产力与蒸散发的对比研究[D]. 北京: 中国矿业大学, 2017. |
[Chen Long. Comparison of estimated global gross primary productivity and evapotranspiration based on different remote sensing data[D]. Beijing: China University of Mining and Technology, 2017.] | |
[17] | 谢旭红, 武磊, 魏健美, 等. 三种蒸散发产品在西北内陆河上游山区的适用性比较[J]. 兰州大学学报(自然科学版), 2021, 57(4): 437-446. |
[Xie Xuhong, Wu Lei, Wei Jianmei, et al. Applicability assessment of AET products in the alpine regions of northwestern China[J]. Journal of Lanzhou University (Natural Sciences Edition), 2021, 57(4): 437-446.] | |
[18] | 汪士为. 近20年内蒙古干旱时空动态及其对气候、蒸散发变化的响应[J]. 水土保持研究, 2022, 29(4): 231-239. |
[Wang Shiwei. Spatial and temporal dynamics of drought in Inner Mongolia in recent 20 years and its response to seasonal climate and evapotranspiration[J]. Research of Soil and Water Conservation, 2022, 29(4): 231-239.] | |
[19] | 张鹏, 张圣微, 徐冉, 等. 基于遥感的科尔沁沙地蒸散发时空动态[J]. 水土保持研究, 2021, 28(3): 399-405, 414-415. |
[Zhang Peng, Zhang Shengwei, Xu Ran, et al. Spatiotemporal dynamics of evapotranspiration in Horqin Sandy Land based on remote sensing[J]. Research of Soil and Water Conservation, 2021, 28(3): 399-405, 414-415.] | |
[20] | 张翔, 朱晓昱, 沈贝贝, 等. 呼伦贝尔植被蒸散发时空变化研究[J]. 中国农业资源与区划, 2020, 41(4): 308-316. |
[Zhang Xiang, Zhu Xiaoyu, Shen Beibei, et al. Analysis of temporal and spatial variation of vegetation evapotranspiration in Hulun Buir[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 308-316.] | |
[21] |
Milich L, Weiss E. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects[J]. International Journal of Remote Sensing, 2000, 21(2): 235-260.
doi: 10.1080/014311600210812 |
[22] | 张钊, 陈宝瑞, 辛晓平. 1960-2015年呼伦贝尔草原气温和降水格局变化特征[J]. 中国农业资源与区划, 2018, 39(12): 121-128. |
[Zhang Zhao, Chen Baorui, Xin Xiaoping. Variations of temperature and precipitation pattern in Hulunber grassland from 1960 to 2015[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 121-128.] | |
[23] | 谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167. |
[Gu Jiahe, Xue Huazhu, Dong Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167.] | |
[24] |
Fensholt R, Langanke T, Rasmussen K, et al. Greenness in semi-arid areas across the globe 1981-2007: An earth observing satellite based analysis of trends and drivers[J]. Remote Sensing of Environment, 2012, 121: 144-158.
doi: 10.1016/j.rse.2012.01.017 |
[25] |
Jiapaer G, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58: 64-76.
doi: 10.1016/j.ecolind.2015.05.036 |
[26] | Zhang H F, Shu Y T, Yang O. Estimation of Hurst parameter by variance-time plots[C]// 1997 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM. 10 Years Networking the Pacific Rim, 1987-1997. Canada: IEEE, 1997, 2: 883-886. |
[27] | 陈耀亮. 干旱区内陆河流域土地利用/土地覆被变化及其对蒸散发的影响[D]. 杭州: 浙江大学, 2018. |
[Chen Yaoliang. Land-use and land-cover change and its impacts on evapotranspiration in inland river basin of arid region[D]. Hangzhou: Zhejiang University, 2018.] | |
[28] | 詹明月. 基于模式数据的中国植被绿化对陆地蒸散发影响研究[D]. 南京: 南京信息工程大学, 2022. |
[Zhan Mingyue. Effects of vegetation greening on land evapotranspiration in China based on model data[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.] | |
[29] | 杨晓慧, 于凤存. 巢湖芦苇湿地蒸散发量及其影响因素分析[J]. 治淮, 2022(4): 21-23. |
[Yang Xiaohui, Yu Fengcun. Analysis of evapotranspiration and its influencing factors in reed wetland of Chaohu Lake[J]. Harnessing the Huaihe River, 2022(4): 21-23.] |
[1] | LU Dongyan, ZHU Xiufang, LIU Tingting, ZHANG Shizhe. Changes in meteorological drought characteristics in China under the 2 ℃ temperature rise scenario [J]. Arid Land Geography, 2023, 46(8): 1227-1237. |
[2] | CHEN Panyu, TONG Luyi. Variations of housing affordability of major cities in China [J]. Arid Land Geography, 2023, 46(8): 1324-1332. |
[3] | DANG Xiaohu, DENG Mingjiang, LI Peng, CAO Xiaoshu, SUI Boyang, SHI Peng, ZHANG Tian, AI Zemin. Ecological-economic system and paradigms of “three water-related lines” area in northwest China [J]. Arid Land Geography, 2023, 46(8): 1355-1365. |
[4] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[5] | CAO Kaijun, SHANG Ning, WANG Mimi. Spatial distribution pattern and accessibility analysis of the key rural tourism villages in the five northwestern provinces of China [J]. Arid Land Geography, 2023, 46(7): 1196-1205. |
[6] | YANG Yifei, YANG Pengnian, WANG Changshu, KOU Xin, TAN Fan, XU Jie, WANG Cui. Effectiveness evaluation of water consumption in agricultural land of Yanqi Basin, Xinjiang [J]. Arid Land Geography, 2023, 46(5): 730-741. |
[7] | KONG Deming, HAO Lisha, XIA Siyou, LI Hongbo. Food security in the argo-pastoral ecotone of northern China from the perspective of grain yield [J]. Arid Land Geography, 2023, 46(5): 782-792. |
[8] | DONG Jianhong, ZHANG Zhibin, LIU Benteng, ZHANG Xinhong. Geographical exploration of the spatial differentiation mechanism of eco-environmental quality in northwest China from the perspective of “production-living-ecological” space [J]. Arid Land Geography, 2023, 46(4): 515-526. |
[9] | ZHU Lei, LI Yannan, HU Jing, TIAN Xiaobo, XU Jiahui, QING Qi. Multi-scale characteristics and influencing mechanism of spatial pattern on research and practice bases in China [J]. Arid Land Geography, 2023, 46(4): 625-635. |
[10] | ZOU Yafeng, ZHANG Qian, RAO Yufei, DEND Min, WANG Qi. Evolution of new urbanization of provincial capitals in western China [J]. Arid Land Geography, 2023, 46(4): 636-648. |
[11] | LIANG Chang’an, DU Guoming, HAO Jun. Spatial-temporal pattern and inducement of agricultural technology innovation in China [J]. Arid Land Geography, 2023, 46(4): 667-677. |
[12] | HAO Yun,WU Miao,WANG Yuyi,DUAN Guangzheng. Biodiversity conservation and cooperation proposals in Uzbekistan [J]. Arid Land Geography, 2023, 46(3): 428-436. |
[13] | XIAO Dongsheng,WANG Ning,LIU Zhicheng. Accuracy of “representative population grid dataset” in arid areas: A case of Gansu-Ningxia-Qinghai region [J]. Arid Land Geography, 2023, 46(3): 505-514. |
[14] | XU Xiaoliang, HUANG Dan, LIU Xuyi, GUAN Jingyun. Spatiotemporal evolution characteristics and influencing factors of provincial tourism efficiency in China [J]. Arid Land Geography, 2023, 46(12): 2052-2060. |
[15] | WU Zhixiang, ZHANG Zhibin, ZHAO Xuewei, CHEN Long, MA Xiaomin, CHAI Jiao. Spatiotemporal distribution pattern and influencing factors of A-level tourist attractions in northwestern China [J]. Arid Land Geography, 2023, 46(12): 2061-2073. |
|