Arid Land Geography ›› 2022, Vol. 45 ›› Issue (1): 66-79.doi: 10.12118/j.issn.1000–6060.2021.132
• Climate Change • Previous Articles Next Articles
LIU Tingting1,2(),ZHU Xiufang1,2,3(
),GUO Rui1,2,XU Kun1,2,ZHANG Shizhe1,2
Received:
2021-03-21
Revised:
2021-07-07
Online:
2022-01-25
Published:
2022-01-21
Contact:
Xiufang ZHU
E-mail:202021051185@mail.bnu.edu.cn;zhuxiufang@bnu.edu.cn
LIU Tingting,ZHU Xiufang,GUO Rui,XU Kun,ZHANG Shizhe. Applicability of ERA5 reanalysis of precipitation data in China[J].Arid Land Geography, 2022, 45(1): 66-79.
Tab. 1
Calculation formula of indicators used to evaluate ERA5 data"
统计指标 | 计算公式 | 取值范围 | 最优值 |
---|---|---|---|
Pearson相关系数(r) | | [-1, 1] | 1 |
均方根误差(RMSE) | | [0, +∞] | 0 |
平均绝对误差(MAE) | | [0, +∞] | 0 |
探测率(POD) | | [0, 1] | 1 |
误报率(FAR) | | [0, 1] | 0 |
公正先兆评分(ETS) | | [-1/3, 1] | 1 |
Tab. 3
Mean values of POD, FAR and ETS in each climate zone with threshold of -0.5 for drought identification"
气候区 | 探测率(POD) | 误报率(FAR) | 公平先兆评分(ETS) |
---|---|---|---|
高原气候区 | 0.653 | 0.334 | 0.351 |
北温带 | 0.717 | 0.291 | 0.419 |
中温带 | 0.685 | 0.302 | 0.386 |
南温带 | 0.693 | 0.295 | 0.401 |
北亚热带 | 0.706 | 0.298 | 0.403 |
中亚热带 | 0.661 | 0.327 | 0.356 |
南亚热带 | 0.688 | 0.305 | 0.388 |
北热带 | 0.662 | 0.326 | 0.352 |
[1] | 夏军, 谈戈. 全球变化与水文科学新的进展与挑战[J]. 资源科学, 2002, 24(3):1-7. |
[Xia Jun, Tan Ge. Hydrological science towards global change: Progress and challenge[J]. Resources Science, 2002, 24(3):1-7. ] | |
[2] |
Adler R F, Huffman G J, Chang A, et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of hydrometeorology, 2003, 4(6):1147-1167.
doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 |
[3] | 谈戈, 夏军, 李新. 无资料地区水文预报研究的方法与出路[J]. 冰川冻土, 2004, 26(2):192-196. |
[Tan Ge, Xia Jun, Li Xin. Hydrological prediction in ungauged basins[J]. Journal of Glaciology and Geocryology, 2004, 26(2):192-196. ] | |
[4] |
Su F, Hong Y, Lettenmaier D P. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin[J]. Journal of Hydrometeorology, 2008, 9(4):622-640.
doi: 10.1175/2007JHM944.1 |
[5] | 黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9):1048-1058. |
[Huang Jianping, Zhang Guolong, Yu Haipeng, et al. Characteristics of climate change in the Yellow River Basin during recent 40 years[J]. Journal of Hydraulic Engineering, 2020, 51(9):1048-1058. ] | |
[6] | 黄颖, 毛文茜, 王潇雅, 等. 近39 a祁连山及其周边地区降水量时空分布特征[J]. 干旱气象, 2020, 38(4):527-534. |
[Huang Ying, Mao Wenqian, Wang Xiaoya, et al. Temporal and spatial distribution of precipitation in the Qilian Mountain and its surrounding areas in recent 39 years[J]. Journal of Arid Meteorology, 2020, 38(4):527-534. ] | |
[7] | 赵建婷, 王艳君, 苏布达, 等. 印度河流域气温、降水、蒸发及干旱变化特征[J]. 干旱区地理, 2020, 43(2):72-82. |
[Zhao Jianting, Wang Yanjun, Su Buda, et al. Spatiotemporal distributions of temperature, precipitation, evapotranspiration, and drought in the Indus River Basin[J]. Arid Land Geography, 2020, 43(2):72-82. ] | |
[8] | 徐昆, 朱秀芳, 刘莹, 等. 采用AquaCrop作物生长模型研究中国玉米干旱脆弱性[J]. 农业工程学报, 2020, 36(1):154-161. |
[Xu Kun, Zhu Xiufang, Liu Ying, et al. Vulnerability of drought disaster of maize in China based on AquaCrop model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1):154-161. ] | |
[9] | 徐昆, 朱秀芳, 刘莹, 等. 气候变化下干旱对中国玉米产量的影响[J]. 农业工程学报, 2020, 36(11):149-158. |
[Xu Kun, Zhu Xiufang, Liu Ying, et al. Effects of drought on maize yield under climate change in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11):149-158. ] | |
[10] | 张小丽, 彭勇, 王本德, 等. 基于SWAT模型的降雨数据适用性评价[J]. 农业工程学报, 2014, 30(19):88-96. |
[Zhang Xiaoli, Peng Yong, Wang Bende, et al. Suitability evaluation of precipitation data using SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19):88-96. ] | |
[11] | 焦振航, 舒红, 吴凯, 等. 降水驱动数据改进对VIC土壤湿度模拟的影响[J]. 城市勘测, 2017(4):37-41. |
[Jiao Zhenhang, Shu Hong, Wu Kai, et al. The rainfall calibration methods’ impact on VIC soil moisture simulation[J]. Urban Surveying, 2017(4):37-41. ] | |
[12] |
Tarek M, Brissette F P, Arsenault R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America[J]. Hydrology and Earth System Sciences, 2020, 24(5):2527-2544.
doi: 10.5194/hess-24-2527-2020 |
[13] | 冯克鹏, 洪阳, 田军仓, 等. 多源降水数据的小流域水文模拟效用评估[J]. 干旱区地理, 2020, 43(5):1179-1191. |
[Feng Kepeng, Hong Yang, Tian Juncang, et al. Evaluating runoff simulation of multi-source precipitation data in small watersheds[J]. Arid Land Geography, 2020, 43(5):1179-1191. ] | |
[14] |
Albergel C, Dutra E, Munier S, et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better?[J]. Hydrology and Earth System Sciences, 2018, 22(6):3515-3532.
doi: 10.5194/hess-22-3515-2018 |
[15] | 韦芬芬, 汤剑平, 王淑瑜. 中国区域夏季再分析资料高空变量可信度的检验[J]. 地球物理学报, 2015, 58(2):383-397. |
[Wei Fenfen, Tang Jianping, Wang Shuyu. A reliability assessment of upper-level reanalysis datasets over China[J]. Chinese Journal of Geophysics, 2015, 58(2):383-397. ] | |
[16] | 胡增运, 倪勇勇, 邵华, 等. CFSR, ERA-Interim和MERRA降水资料在中亚地区的适用性[J]. 干旱区地理, 2013, 36(4):700-708. |
[Hu Zengyun, Ni Yongyong, Shao Hua, et al. Applicability study of CFSR, ERA-Interim and MERRA precipitation estimates in Central Asia[J]. Arid Land Geography, 2013, 36(4):700-708. ] | |
[17] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):1999-2049.
doi: 10.1002/qj.v146.730 |
[18] |
Graham R M, Hudson S R, Maturilli M. Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses[J]. Geophysical Research Letters, 2019, 46(11):6138-6147.
doi: 10.1029/2019GL082781 |
[19] |
Hénin R, Liberato M L, Ramos A M, et al. Assessing the use of satellite-based estimates and high-resolution precipitation datasets for the study of extreme precipitation events over the Iberian Peninsula[J]. Water, 2018, 10(11):1688, doi: 10.3390/w10111688.
doi: 10.3390/w10111688 |
[20] |
Wang C, Graham R M, Wang K, et al. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution[J]. The Cryosphere, 2019, 13(6):1661-1679.
doi: 10.5194/tc-13-1661-2019 |
[21] |
Betts A K, Chan D Z, Desjardins R L. Near-surface biases in ERA5 over the Canadian prairies[J]. Frontiers in Environmental Science, 2019, 7:129, doi: 10.3389/fenvs.2019.00129.
doi: 10.3389/fenvs.2019.00129 |
[22] |
Beck H E, Pan M, Roy T, et al. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS[J]. Hydrology and Earth System Sciences, 2019, 23(1):207-224.
doi: 10.5194/hess-23-207-2019 |
[23] |
Nogueira M. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences[J]. Journal of Hydrology, 2020, 583:124632, doi: 10.1016/j.jhydrol.2020.124632.
doi: 10.1016/j.jhydrol.2020.124632 |
[24] |
Xu X, Frey S K, Boluwade A, et al. Evaluation of variability among different precipitation products in the Northern Great Plains[J]. Journal of Hydrology: Regional Studies, 2019, 24:100608, doi: 10.1016/j.ejrh.2019.100608.
doi: 10.1016/j.ejrh.2019.100608 |
[25] |
Amjad M, Yilmaz M T, Yucel I, et al. Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography[J]. Journal of Hydrology, 2020, 584:124707, doi: 10.1016/j.jhydrol.2020.124632.
doi: 10.1016/j.jhydrol.2020.124632 |
[26] |
Fallah A, Rakhshandehroo G R, Berg P, et al. Evaluation of precipitation datasets against local observations in southwestern Iran[J]. International Journal of Climatology, 2020, 40(9):4102-4116.
doi: 10.1002/joc.v40.9 |
[27] |
Jiang Q, Li W, Fan Z, et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland[J]. Journal of Hydrology, 2020: 125660, doi: 10.1016/j.jhydrol.2020.125660.
doi: 10.1016/j.jhydrol.2020.125660 |
[28] | 成晓裕, 王艳华, 李国春, 等. 三套再分析降水资料在中国区域的对比评估[J]. 气候变化研究进展, 2013, 9(4):258-265. |
[Cheng Xiaoyu, Wang Yanhua, Li Guochun, et al. Evaluation of three reanalysis precipitation datasets in China[J]. Climate Change Research, 2013, 9(4):258-265. ] | |
[29] | 孙葭, 章新平, 黄一民. 不同再分析降水数据在洞庭湖流域的精度评估[J]. 长江流域资源与环境, 2015, 24(11):1850-1859. |
[Sun Jia, Zhang Xinping, Huang Yimin. Evaluation of precipitation from ERA-Interim, CRU, GPCP and TRMM reanalysis data in the Dongting Lake Basin[J]. Resources and Environment in the Yangtze Basin, 2015, 24(11):1850-1859. ] | |
[30] | 刘鹏飞, 刘丹丹, 梁丰, 等. 三套再分析降水资料在东北地区的适用性评价[J]. 水土保持研究, 2018, 25(4):215-221. |
[Liu Pengfei, Liu Dandan, Liang Feng, et al. Comparison the adaptability of CFSR, MERRA, NCEP reanalysis precipitation data and observation in northeast China[J]. Research of Soil and Water Conservation, 2018, 25(4):215-221. ] |
[1] | ZHANG Shunwei, ZHOU Zixiang, XIONG Xuanchen, ZHOU Jie. Extreme climate characteristics in the Wuding River Basin based on WRF model [J]. Arid Land Geography, 2024, 47(9): 1482-1495. |
[2] | GONG Dongdong, GAO Fan, WU Bin, LIU Kun. Spatiotemporal change of groundwater drought in the plain area of Xinjiang based on GRACE and its response to meteorological drought [J]. Arid Land Geography, 2024, 47(9): 1496-1507. |
[3] | CHENG Ying, SONG Xingyu, FU Zhengxu, LI Qian, WANG Yicheng, HAN Lanying. New characteristics of various intensity precipitation and atmospheric humidity index in the upper reaches of the Yellow River in recent 60 years [J]. Arid Land Geography, 2024, 47(8): 1327-1337. |
[4] | LIU Yu, MEI Hua, FAN Wenbo, REN Congzhe, WANG Shiwei, LI Shunshun. Temporal and spatial characteristics of drought in the Ta’e Basin from 1992 to 2022 based on the SPEI index [J]. Arid Land Geography, 2024, 47(8): 1338-1347. |
[5] | WANG Dai, CUI Yang, WANG Suyan, ZHANG Wen. Interdecadal changes and risk assessment of drought events in Ningxia from 1961 to 2020 [J]. Arid Land Geography, 2024, 47(5): 785-797. |
[6] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
[7] | LI Heng, ZHU Bingbing, BIAN He, WANG Rong, TANG Xinyi. Temporal and spatial changes in extreme precipitation and its driving factors in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020 [J]. Arid Land Geography, 2024, 47(4): 539-548. |
[8] | HUANG Manjie, LI Yanzhong, WANG Yuangang, YU Zhiguo, ZHUANG Jiacheng, XING Yincong. Evaluation of meteorological drought performance of multisource remote-sensing precipitation products in arid northwest China [J]. Arid Land Geography, 2024, 47(4): 549-560. |
[9] | LU Dongyan, ZHU Xiufang, TANG Mingxiu, GUO Chunhua, LIU Tingting. Assessment of drought risk changes in China under different temperature rise scenarios [J]. Arid Land Geography, 2024, 47(3): 369-379. |
[10] | ZHANG Hongfang, PAN Liujie, LU Shan, SHEN Jiaojiao. Variation characteristics of extreme precipitation in Qinling and surrounding areas over the past 40 years [J]. Arid Land Geography, 2024, 47(3): 380-390. |
[11] | CAI Xia, LIANG Guihua, ZHANG Dongfeng, CAI Lin, BAI Ying, LI Ruifeng. Temporal and spatial evolution of extreme precipitation and its response to atmospheric circulation factors in northern Shanxi Province [J]. Arid Land Geography, 2024, 47(3): 391-402. |
[12] | REN Zijian, WANG Jianglin, XU Henian, QIN Chun. Evolution and driving factors of megadrought and pluvial events in the Qilian Mountains during the past 500 years [J]. Arid Land Geography, 2024, 47(2): 214-227. |
[13] | ZHANG Xiaolong, CHEN Yaning, ZHU Chenggang, FU Aihong, LI Yupeng, SUN Huilan. Lake change and genetic analysis in east Kunlun Kumukuli Basin from 1986 to 2023 [J]. Arid Land Geography, 2024, 47(10): 1651-1661. |
[14] | LIU Wenli, CHEN Zhang, ZHAO Yong, LIANG Yuxin. Influences of soil moisture anomalies in May on June precipitation in Central Asia [J]. Arid Land Geography, 2024, 47(1): 38-47. |
[15] | SHI Weiliang, CHE Luyang, LI Tao. Probability distribution and comprehensive risk assessment of extreme precipitation in flood season in Shaanxi Province [J]. Arid Land Geography, 2023, 46(9): 1407-1417. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 548
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1422
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|