Arid Land Geography ›› 2025, Vol. 48 ›› Issue (9): 1589-1599.doi: 10.12118/j.issn.1000-6060.2024.577
• Earth Surface Process • Previous Articles Next Articles
WANG Xiaofei1,2(
), PI Huawei1,2, LI Sisi1,2(
)
Received:2024-09-25
Revised:2025-01-10
Online:2025-09-25
Published:2025-09-17
Contact:
LI Sisi
E-mail:19861371771@163.com;liss.16b@igsnrr.ac.cn
WANG Xiaofei, PI Huawei, LI Sisi. Spatiotemporal characteristics and driving factors of soil wind erosion potential on the Qinghai-Xizang Plateau[J].Arid Land Geography, 2025, 48(9): 1589-1599.
Tab. 1
Simulated forecast results of RWEQ model"
| 区域 | 风力因子 | 土壤风蚀潜力 | |||||
|---|---|---|---|---|---|---|---|
| 均值/m3·s-3 | 年均变化率/m3·s-3·a-1 | 变异系数 | 均值/kg·m-2 | 年均变化率/kg·m-2·a-1 | 变异系数 | ||
| 青藏高原 | 1167.616 | -2.198 | 1.047 | 3.754 | -0.029 | 2.133 | |
| 子区域Ⅰ | 1458.749 | -13.990 | 0.913 | 5.492 | -0.125* | 1.833 | |
| 子区域Ⅱ | 939.375 | 34.786*** | 1.271 | 2.043 | 0.100*** | 1.679 | |
| 子区域Ⅲ | 638.781 | 18.243 | 1.111 | 1.888 | 0.124 | 1.495 | |
| 子区域Ⅳ | 1346.168 | -49.351* | 1.138 | 10.652 | -0.522** | 1.686 | |
| 子区域Ⅴ | 1569.005 | -58.388*** | 0.616 | 1.041 | -0.061* | 0.998 | |
| [1] |
郭茵, 雷加强, 范敬龙, 等. 近20 a蒙古国土壤风蚀变化特征及主要影响因素分析[J]. 干旱区研究, 2022, 39(4): 1200-1211.
doi: 10.13866/j.azr.2022.04.21 |
|
[Guo Yin, Lei Jiaqiang, Fan Jinglong, et al. Soil wind erosion characteristics and main influencing factors in Mongolia in recent 20 years[J]. Arid Zone Research, 2022, 39(4): 1200-1211.]
doi: 10.13866/j.azr.2022.04.21 |
|
| [2] | Pi H W, Sharratt B, Lei J Q. Wind erosion and dust emissions in central Asia: Spatiotemporal simulations in a typical dust year[J]. Earth Surface Processes and Landforms, 2019, 44(2): 521-534. |
| [3] | Li H L, Tatarko J, Kucharski M, et al. PM2.5 and PM10 emissions from agricultural soils by wind erosion[J]. Aeolian Research, 2015, 19: 171-182. |
| [4] | Panagos P, Ballabio C, Himics M, et al. Projections of soil loss by water erosion in Europe by 2050[J]. Environmental Science & Policy, 2021, 124: 380-392. |
| [5] | Guo B, Zang W Q, Han B M, et al. Dynamic monitoring of desertification in Naiman Banner based on feature space models with typical surface parameters derived from Landsat images[J]. Land Degradation & Development, 2020, 31(12): 1573-1592. |
| [6] | Zhao C N, Zhang H B, Wang M, et al. Impacts of climate change on wind erosion in Southern Africa between 1991 and 2015[J]. Land Degradation & Development, 2021, 32(6): 2169-2182. |
| [7] | Wei W, Chen L D, Fu B J, et al. Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China[J]. Catena, 2010, 81(1): 24-31. |
| [8] | Peng F, Xue X, You Q G, et al. Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau[J]. Ecological Indicators, 2018, 93: 572-580. |
| [9] | Liu Z Y, Dong Z B, Zhang Z C, et al. Spatial and temporal variation of the near-surface wind regimes in the Taklimakan Desert, northwest China[J]. Theoretical and Applied Climatology, 2019, 138(1): 433-447. |
| [10] |
蔺阿荣, 周冬梅, 马静, 等. 基于RWEQ模型的疏勒河流域防风固沙功能价值评估[J]. 干旱区地理, 2024, 47(1): 58-67.
doi: 10.12118/j.issn.1000-6060.2023.333 |
|
[Lin Arong, Zhou Dongmei, Ma Jing, et al. Evaluation of wind prevention and sand fixation function in Shule River Basin based on RWEQ model[J]. Arid Land Geography, 2024, 47(1): 58-67.]
doi: 10.12118/j.issn.1000-6060.2023.333 |
|
| [11] | Teng Y M, Zhan J Y, Liu W, et al. Spatiotemporal dynamics and drivers of wind erosion on the Qinghai-Tibet Plateau, China[J]. Ecological Indicators, 2021, 123: 107340, doi: 10.1016/j.ecolind.2021.107340. |
| [12] | Dong Z B, Hu G Y, Qian G Q, et al. High-altitude aeolian research on the Tibetan Plateau[J]. Reviews of Geophysics, 2017, 55(4): 864-901. |
| [13] | Li J C, Yao Q, Zhou N, et al. Modern aeolian desertification on the Tibetan Plateau under climate change[J]. Land Degradation & Development, 2021, 32(5): 1908-1916. |
| [14] | 陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展[J]. 土壤学报, 2020, 57(3): 547-564. |
| [Chen Tongde, Jiao Juying, Wang Haolin, et al. Progress in research on soil erosion in Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica, 2020, 57(3): 547-564.] | |
| [15] | 曹雪, 焦菊英, 李建军, 等. 青藏高原柴达木盆地东部地区的土壤侵蚀现状调查[J]. 水土保持通报, 2021, 41(5): 1-8, 29. |
| [Cao Xue, Jiao Juying, Li Jianjun, et al. Investigation on current status of soil erosion in eastern Qaidam Basin of Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation, 2021, 41(5): 1-8, 29.] | |
| [16] | Wu G X, Liu Y M, Dong B W, et al. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation[J]. Climate Dynamics, 2012, 39(5): 1169-1181. |
| [17] | Liu X M, Song H Q, Lei T J, et al. Effects of natural and anthropogenic factors and their interactions on dust events in northern China[J]. Catena, 2021, 196: 104919, doi: 10.1016/j.catena.2020.104919. |
| [18] | Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5(5): 424-430. |
| [19] | Kraaijenbrink P D A, Stigter E E, Yao T D, et al. Climate change decisive for Asia’s snow meltwater supply[J]. Nature Climate Change, 2021, 11(7): 591-597. |
| [20] | 唐信英, 宋云帆, 王鸽, 等. 1970—2020年青藏高原近地面风速时空变化特征[J]. 应用与环境生物学报, 2022, 28(4): 844-850. |
| [Tang Xinying, Song Yunfan, Wang Ge, et al. Spatio-temporal variation of near-surface wind speed over Qinghai-Tibet Plateau from 1970 to 2020[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 844-850.] | |
| [21] | Li Y, Li J J, Are K S, et al. Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: Evidenced from 137Cs and 210Pbex measurements[J]. Agriculture, Ecosystems & Environment, 2019, 285: 106643, doi: 10.1016/j.agee.2019.106643. |
| [22] | Li M Q, Liu S L, Liu Y X, et al. The cost-benefit evaluation based on ecosystem services under different ecological restoration scenarios[J]. Environmental Monitoring and Assessment, 2021, 193(7): 398, doi: 10.1007/s10661-021-09188-7. |
| [23] | Tian Q L, Zhang X P, He J, et al. Potential risk of soil erosion on the Tibetan Plateau during 1990—2020: Impact of climate change and human activities[J]. Ecological Indicators, 2023, 154: 110669, doi: 10.1016/j.ecolind.2023.110669. |
| [24] | Ma X F, Zhao C Y, Zhu J T. Aggravated risk of soil erosion with global warming: A global meta-analysis[J]. Catena, 2021, 200: 105129, doi: 10.1016/j.catena.2020.105129. |
| [25] | Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society of America Journal, 1965, 29(5): 602-608. |
| [26] | Fryrear D W, Bilbro J D, Saleh A, et al. RWEQ: Improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2): 183-189. |
| [27] | Hagen L J. A wind erosion prediction system to meet user needs[J]. Journal of Soil and Water Conservation, 1991, 46(2): 106-111. |
| [28] | Gassman P W, Willimms J R, Wang X Y, et al. The agricultural policy/environmental eXtender (APEX) model: An emerging tool for landscape and watershed environmental analyses[J]. Environmental Science, Agricultural and Food Sciences, 2010, 53(3): 711-740. |
| [29] | Zhang X Y, Zhang C L, Zuo X F, et al. Extension of the revised wind erosion equation (RWEQ) to calculate grassland wind erosion rates based on the 137Cs tracing technique[J]. Catena, 2024, 234: 107544, doi: 10.1016/j.catena.2023.107544. |
| [30] | Dai Y J, Tian L, Zhu P Z, et al. Dynamic aeolian erosion evaluation and ecological service assessment in Inner Mongolia, northern China[J]. Geoderma, 2022, 406: 115518, doi: 10.1016/j.geoderma.2021.115518. |
| [31] | Li J Y, Ma X F, Zhang C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century[J]. Science of the Total Environment, 2020, 709: 136060, doi: 10.1016/j.scitotenv.2019.136060. |
| [32] | Wang Y Y, Xiao Y, Xie G D, et al. Evaluation of Qinghai-Tibet Plateau wind erosion prevention service based on RWEQ model[J]. Sustainability, 2022, 14(8): 4635, doi: 10.3390/su14084635. |
| [33] | 王蕾, 赵霞, 张琛悦, 等. 基于RWEQ模型的茫崖市防风固沙功能评估及敏感地类识别[J]. 水土保持研究, 2023, 30(1): 144-153. |
| [Wang Lei, Zhao Xia, Zhang Chenyue, et al. Assessment of windbreak and sand fixation function and identification of sensitive landuse types in Mangai City based on RWEQ model[J]. Research of Soil and Water Conservation, 2023, 30(1): 144-153.] | |
| [34] | Panebianco J E, Buschiazzo D E. Effect of temporal resolution of wind data on wind erosion prediction with the revised wind erosion equation (RWEQ)[J]. Ciencia Del Suelo, 2013, 31(2): 189-199. |
| [35] |
张莉, 李继峰, 常春平, 等. 风速分辨率对土壤风蚀模数计算结果的影响[J]. 中国沙漠, 2022, 42(3): 21-30.
doi: 10.7522/j.issn.1000-694X.2021.00164 |
|
[Zhang Li, Li Jifeng, Chang Chunping, et al. Temporal and spatial characteristics of diurnal variations of wind speed in wind erosion areas over China[J]. Journal of Desert Research, 2022, 42(3): 21-30.]
doi: 10.7522/j.issn.1000-694X.2021.00164 |
|
| [36] | Zhang L, Guo Z L, Li J F, et al. Effect of the type of wind data on regional potential wind erosion estimation[J]. Frontiers in Environmental Science, 2022, 10: 847128, doi: 10.3389/fenvs.2022.847128. |
| [37] |
Li C L, Kang S C. Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau[J]. Journal of Geographical Sciences, 2006, 16(3): 337-345.
doi: 10.1007/s11442-006-0309-6 |
| [38] | Herzschuh U, Birks H J B, Ni J, et al. Holocene land-cover changes on the Tibetan Plateau[J]. The Holocene, 2010, 20(1): 91-104. |
| [39] | Liu Y M, Bao Q, Duan A M, et al. Recent progress in the impact of the Tibetan Plateau on climate in China[J]. Advances in Atmospheric Sciences, 2007, 24(6): 1060-1076. |
| [40] | Mu H W, Li X C, Wen Y N, et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018[J]. Scientific Data, 2022, 9(1): 176, doi: 10.1038/s41597-022-01284-8. |
| [41] | 刘军会, 马苏, 高吉喜, 等. 区域尺度生态保护红线划定——以京津冀地区为例[J]. 中国环境科学, 2018, 38(7): 2652-2657. |
| [Liu Junhui, Ma Su, Gao Jixi, et al. Delimiting the ecological conservation redline at regional scale: A case study of Beijing-Tianjin-Hebei region[J]. China Environmental Science, 2018, 38(7): 2652-2657.] | |
| [42] | Xu J, Xiao Y, Xie G D, et al. Computing payments for wind erosion prevention service incorporating ecosystem services flow and regional disparity in Yanchi County[J]. Science of the Total Environment, 2019, 674: 563-579. |
| [43] | Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259. |
| [44] | Kendall M A. Rank correlation methods[J]. Journal of the Institute of Actuaries, 1949, 75(1): 140-141. |
| [45] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
| [46] | Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. GIScience & Remote Sensing, 2020, 57(5): 593-610. |
| [47] | Gillies J A, Nickling W G, Tilson M. Frequency, magnitude, and characteristics of aeolian sediment transport: McMurdo dry valleys, Antarctica[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 461-479. |
| [48] | Shen Y P, Zhang C L, Wang X S, et al. Statistical characteristics of wind erosion events in the erosion area of northern China[J]. Catena, 2018, 167: 399-410. |
| [49] | 袁莹莹, 殷水清, 谢云, 等. 我国风蚀区风速日变率时空变化特征[J]. 干旱区地理, 2018, 41(3): 480-487. |
| [Yuan Yingying, Yin Shuiqing, Xie Yun, et al. Temporal and spatial characteristics of diurnal variations of wind speed in wind erosion areas over China[J]. Arid Land Geography, 2018, 41(3): 480-487.] | |
| [50] |
超宝, 赵媛媛, 武海岩, 等. 2000—2020年蒙古高原生态系统服务及其对气候因子的响应[J]. 干旱区地理, 2024, 47(9): 1577-1586.
doi: 10.12118/j.issn.1000-6060.2023.602 |
|
[Chao Bao, Zhao Yuanyuan, Wu Haiyan, et al. Ecosystem services and its response to climate factors in the Mongolian Plateau from 2000 to 2020[J]. Arid Land Geography, 2024, 47(9): 1577-1586.]
doi: 10.12118/j.issn.1000-6060.2023.602 |
|
||
