Arid Land Geography ›› 2025, Vol. 48 ›› Issue (9): 1578-1588.doi: 10.12118/j.issn.1000-6060.2024.657
• Plant Ecology • Previous Articles Next Articles
LI Wenhua1,2,3,4(
), LI Shengyu1,2,3,4(
), XU Xinwen1,2,3,4, MIAO Jiamin1,2,3,4, LYU Zhentao1,2,3,4
Received:2024-10-26
Revised:2024-12-12
Online:2025-09-25
Published:2025-09-17
Contact:
LI Shengyu
E-mail:liwenhua22@mails.ucas.ac.cn;oasis@ms.xjb.ac.cn
LI Wenhua, LI Shengyu, XU Xinwen, MIAO Jiamin, LYU Zhentao. Predicting the potential distribution of Artemisia songarica in Xinjiang under climate change based on the MaxEnt model[J].Arid Land Geography, 2025, 48(9): 1578-1588.
Tab. 1
Environmental factors"
| 环境因子 | 符号 | 变量 |
|---|---|---|
| 气候因子 | bio1 | 年平均气温/℃ |
| bio2 | 昼夜温差月均值/℃ | |
| bio3 | 等温性 | |
| bio4 | 温度季节性 | |
| bio5 | 最暖月最高温/℃ | |
| bio6 | 最冷月最低温/℃ | |
| bio7 | 温度年度范围/℃ | |
| bio8 | 最湿季度均温/℃ | |
| bio9 | 最干季度均温/℃ | |
| bio10 | 最暖季度均温/℃ | |
| bio11 | 最冷季度均温/℃ | |
| bio12 | 年平均降水量/mm | |
| bio13 | 最湿月降水量/mm | |
| bio14 | 最干月降水量/mm | |
| bio15 | 降水量季节变异系数 | |
| bio16 | 最湿季度降水量/mm | |
| bio17 | 最干季度降水量/mm | |
| bio18 | 最暖季度降水量/mm | |
| bio19 | 最冷季度降水量/mm | |
| 土壤因子 | clay1 | 0~30 cm黏土含量/% |
| clay2 | 30~60 cm黏土含量/% | |
| sand1 | 0~30 cm砂土含量/% | |
| sand2 | 30~60 cm砂土含量/% | |
| 地形因子 | elev | 海拔/m |
| 其他因子 | hfp | 人类足迹指数 |
Tab. 2
Parameters related to standard deviation under different climatic conditions"
| 气候条件 | 纬度/°N | 经度/°E | 长轴/km | 短轴/km | 面积/km2 |
|---|---|---|---|---|---|
| 当代 | 42.95 | 85.18 | 640.68 | 391.92 | 788768.13 |
| 2041—2060年(SSP126) | 42.64 | 85.16 | 646.16 | 407.30 | 826740.30 |
| 2041—2060年(SSP245) | 42.87 | 85.19 | 646.30 | 398.86 | 809787.00 |
| 2041—2060年(SSP585) | 42.74 | 85.22 | 645.63 | 404.96 | 821310.25 |
| 2081—2100年(SSP126) | 42.94 | 85.17 | 637.36 | 401.22 | 803319.60 |
| 2081—2100年(SSP245) | 42.93 | 85.30 | 651.31 | 403.16 | 824873.83 |
| 2081—2100年(SSP585) | 42.52 | 85.20 | 650.18 | 415.93 | 849509.55 |
| [1] | Yang J, Wang Y C, Xiu C L, et al. Optimizing local climate zones to mitigate urban heat island effect in human settlements[J]. Journal of Cleaner Production, 2020, 275: 123767, doi: 10.1016/j.jclepro.2020.123767. |
| [2] | 吕佳佳, 吴建国. 气候变化对植物及植被分布的影响研究进展[J]. 环境科学与技术, 2009, 32(6): 85-95. |
| [Lü Jiajia, Wu Jianguo. Advances in the effects of climate change on the distribution of plant species and vegetation in China[J]. Environmental Science and Technology, 2009, 32(6): 85-95.] | |
| [3] | 赵娟, 史雅楠, 李新平. 气候变暖背景下黄河中游晋西黄土高原的植被响应[J]. 山西林业科技, 2024, 53(2): 46-48. |
| [Zhao Juan, Shi Ya’nan, Li Xinping. Vegetation response of the western Shanxi Loess Plateau in the middle reaches of the Yellow River under the background of climate warming[J]. Shanxi Forestry Science and Technology, 2024, 53(2): 46-48.] | |
| [4] | Armstrong Mckay D I, Staal A, Abrams J F, et al. Exceeding 1.5 ℃ global warming could trigger multiple climate tipping points[J]. Science, 2022, 377(6611): 1171, doi: 10.1126/science.abn7950. |
| [5] |
卢冬燕, 朱秀芳, 唐明秀, 等. 不同温升情景下中国旱灾风险变化评估[J]. 干旱区地理, 2024, 47(3): 369-379.
doi: 10.12118/j.issn.1000-6060.2023.448 |
|
[Lu Dongyan, Zhu Xiufang, Tang Mingxiu, et al. Assessment of drought risk changes in China under different temperature rise scenarios[J]. Arid Land Geography, 2024, 47(3): 369-379.]
doi: 10.12118/j.issn.1000-6060.2023.448 |
|
| [6] | Kaky E, Nolan V, Alatawi A, et al. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants[J]. Ecological Informatics, 2020, 60: 101150, doi: 10.1016/j.ecoinf.2020.101150. |
| [7] | Liu X T, Yuan Q, Ni J. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 273-283. |
| [8] | Xing D L, Hao Z Q. The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011, 19(3): 295-302. |
| [9] | 马正平. 准噶尔西部沙漠中的主要植物[J]. 新疆农业科学, 1959(12): 500-505. |
| [Ma Zhengping. The main plants in the western deserts of the Junggar Basin[J]. Xinjiang Agricultural Sciences, 1959(12): 500-505.] | |
| [10] | 王新军. 古尔班通古特沙漠固沙植被格局与水文过程的关系研究[D]. 乌鲁木齐: 新疆农业大学, 2020. |
| [Wang Xinjun. Study on relationship of sand-fixating vegetation pattern and hydrological process in Gurbantonggut Desert[D]. Urumqi: Xinjiang Agricultural University, 2020.] | |
| [11] | 陶冶, 张元明. 准噶尔沙蒿群落主要物种间的关联性分析[J]. 中国沙漠, 2012, 32(5): 1308-1314. |
| [Tao Ye, Zhang Yuanming. Interspecific associations among main species in Artemisia songarica communities in Junggar Basin, China[J]. Journal of Desert Research, 2012, 32(5): 1308-1314.] | |
| [12] | Wang X M, Geng X, Liu B, et al. Desert ecosystems in China: Past, present, and future[J]. Earth-Science Reviews, 2022, 234: 104206, doi: 10.1016/j.earscirev.2022.104206. |
| [13] | 张杰, 张旸, 赵振勇, 等. 中国飞蝗(Locusta migratoria)灾害地理分布模拟及其生物气候因子分析[J]. 干旱区地理, 2019, 42(3): 590-598. |
|
[Zhang Jie, Zhang Yang, Zhao Zhenyong, et al. Potential geographic distribution modeling and bioclimatic analysis of outbreak risk for the migratory locust plague in China[J]. Arid Land Geography, 2019, 42(3): 590-598.]
doi: 10.12118/j.issn.1000-6060.2019.03.15 |
|
| [14] |
Mu H W, Li X C, Wen Y N, et al. A global record of annual terrestrial human footprint dataset from 2000 to 2018[J]. Scientific Data, 2022, 9: 176, doi: 10.1038/s41597-022-01284-8.
pmid: 35440581 |
| [15] | Zhang Y F, Chen S T, Gao S T, et al. Prediction of global potential suitable habitats of Nicotiana alata Link et Otto based on MaxEnt model[J]. Scientific Reports, 2023, 13: 4851, doi: 10.1038/s41598-023-29678-7. |
| [16] | 张佳怡, 伦玉蕊, 刘浏, 等. CMIP6多模式在青藏高原的适应性评估及未来气候变化预估[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 77-89. |
| [Zhang Jiayi, Lun Yurui, Liu Liu, et al. CMIP6 evaluation and projection of climate change in Tibetan Plateua[J]. Journal of Beijing Normal University (Natural Science Edition), 2022, 58(1): 77-89.] | |
| [17] | Fang J Q, Shi J F, Zhang P, et al. Potential distribution projections for Senegalia senegal (L.) Britton under climate change scenarios[J]. Forests, 2024, 15(2): 379, doi: 10.3390/f15020379. |
| [18] | Zhao Z Y, Xiao N W, Liu G H, et al. Prediction of the potential geographical distribution of five species of Scutiger in the south of Hengduan Mountains biodiversity conservation priority zone[J]. Acta Ecologica Sinica, 2022, 42(7): 2636-2647. |
| [19] | Shcheglovitova M, Anderson R P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes[J]. Ecological Modelling, 2013, 269: 9-17. |
| [20] |
吴双梅, 周冬梅, 马静, 等. 不同气候情景下环县柠条锦鸡儿分布及土壤碳储量特征[J]. 干旱区地理, 2025, 48(5): 812-824.
doi: 10.12118/j.issn.1000-6060.2024.407 |
|
[Wu Shuangmei, Zhou Dongmei, Ma Jing, et al. Characteristics of Caragana korshinskii distribution and soilcarbon storage in Huan County under different climate scenarios[J]. Arid Land Geography, 2025, 48(5): 812-824.]
doi: 10.12118/j.issn.1000-6060.2024.407 |
|
| [21] | Shao M H, Wang L, Li B W, et al. Maxent modeling for identifying the nature reserve of Cistanche deserticola Ma under effects of the host (Haloxylon Bunge) forest and climate changes in Xinjiang, China[J]. Forests, 2022, 13(2): 189, doi: 10.3390/f13020189. |
| [22] | 张明珠, 叶兴状, 李佳慧, 等. 气候变化情景下长序榆在中国的潜在适生区预测[J]. 生态学杂志, 2021, 40(12): 3822-3835. |
| [Zhang Mingzhu, Ye Xingzhuang, Li Jiahui, et al. Prediction of potential suitable area of Ulmus elongata in China under climate change scenarios[J]. Chinese Journal of Ecology, 2021, 40(12): 3822-3835.] | |
| [23] | 孙淑霞. 气候变化下中国栎属物种及其丰富度潜在分布格局模拟预测研究[D]. 济南: 山东大学, 2022. |
| [Sun Shuxia. The effect of climate change on the potential distribution pattern of oaks (Quercus L.) and its richness in China[D]. Jinan: Shandong University, 2022.] | |
| [24] | 李述. 干旱、半干旱区土地利用/覆盖变化与荒漠化的遥感综合研究[D]. 兰州: 兰州大学, 2006. |
| [Li Shu. A synthetical study on land use/cover change and desertification in arid and semiarid region[D]. Lanzhou: Lanzhou University, 2006.] | |
| [25] | Guo B, Wei C X, Yu Y, et al. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity?[J]. Science of the Total Environment, 2022, 813: 152512, doi: 10.1016/j.scitotenv.2021.152512. |
| [26] |
高晓宇, 郝海超, 张雪琪, 等. 中国西北干旱区植被水分利用效率变化对气象要素的响应——以新疆为例[J]. 干旱区地理, 2023, 46(7): 1111-1120.
doi: 10.12118/j.issn.1000-6060.2022.545 |
|
[Gao Xiaoyu, Hao Haichao, Zhang Xueqi, et al. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1111-1120.]
doi: 10.12118/j.issn.1000-6060.2022.545 |
|
| [27] | 王方琳, 柴成武, 赵鹏, 等. 3种荒漠植物光合及叶绿素荧光对干旱胁迫的响应及抗旱性评价[J]. 西北植物学报, 2021, 41(10): 1755-1765. |
| [Wang Fanglin, Chai Chengwu, Zhao Peng, et al. Photosynthetic and ChlorophyⅡ fluorescence responses of three desert species to drought stress and evaluation of drought resistance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(10): 1755-1765.] | |
| [28] | 褚建民. 干旱区植物的水分选择性利用研究[D]. 北京: 中国林业科学研究院, 2008. |
| [Chu Jianmin. Study on water selective utilization by plants in arid regions[D]. Beijing: Chinese Academy of Forestry Sciences, 2008.] | |
| [29] | 陈林, 杨新国, 宋乃平, 等. 干旱半干旱地区植物叶片水分吸收性状[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 565-574. |
| [Chen Lin, Yang Xinguo, Song Naiping, et al. Leaf water uptake strategy of plants in the arid and semi-arid region of Ningxia[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2013, 39(5): 565-574.] | |
| [30] |
郑新军, 李嵩, 李彦. 准噶尔盆地荒漠植物的叶片水分吸收策略[J]. 植物生态学报, 2011, 35(9): 893-905.
doi: 10.3724/SP.J.1258.2011.00893 |
|
[Zheng Xinjun, Li Song, Li Yan. Leaf water uptake strategy of desert plants in the Junggar Basin, China[J]. Chinese Journal of Plant Ecology, 2011, 35(9): 893-905.]
doi: 10.3724/SP.J.1258.2011.00893 |
|
| [31] | Madouh T, Quoreshi A. The function of Arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: A review[J]. Diversity-Basel, 2023, 15(3): 391, doi: 10.3390/d15030391. |
| [32] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003(2): 152-164. |
| [Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in northwest China[J]. Quaternary Sciences, 2003(2): 152-164.] | |
| [33] | 李伟光, 易雪, 侯美亭, 等. 基于标准化降水蒸散指数的中国干旱趋势研究[J]. 中国生态农业学报, 2012, 20(5): 643-649. |
| [Li Weiguang, Yi Xue, Hou Meiting, et al. Standardized precipitation evapotranspiration index shows drought trends in China[J]. Journal of Eco-Agriculture in China, 2012, 20(5): 643-649.] | |
| [34] | 阿旺, 吕汪汪, 周阳, 等. 干旱降低了气候变暖对高寒草地群落的正效应[J]. 中国科学: 地球科学, 2024, 54(10): 3278-3291. |
| [A Wang, Lü Wangwang, Zhou Yang, et al. Drought decreases the positive impact of warming on an alpine grassland community[J]. Scientia Sinica (Terrae), 2024, 54(10): 3278-3291.] | |
| [35] |
Lenoir J, Gegout J, Marquet P, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320(5884): 1768-1771.
doi: 10.1126/science.1156831 pmid: 18583610 |
| [36] | Thuiller W. Editorial commentary on “BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change”[J]. Global Change Biology, 2014, 20(12): 3591-3592. |
| [37] | Shafer S, Bartlein P, Thompson R. Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios[J]. Ecosystems, 2001, 4(3): 200-215. |
| [38] | 魏宇晨. 亚洲中高纬植被对极端气候的响应及其模拟评估[D]. 南京: 南京信息工程大学, 2023. |
| [Wei Yuchen. Response of vegetation to climate extremes in middle and high latitudes of Asia and its simulation and assessment[J]. Nanjing: Nanjing University of Information Science and Technology, 2023.] | |
| [39] | Ni M, Vellend M. Soil properties constrain predicted poleward migration of plants under climate change[J]. New Phytologist, 2024, 241(1): 131-141. |
| [1] | ZHANG Fei, LI Jian, LI Huirong, XIE Tao, ZHANG Xuehong, WANG Chao, BAI Shuying, SONG Zhengshan. Spatiotemporal characteristics of net primary productivity and its response to influencing factors in Xilin Gol League grassland from 2001 to 2024 [J]. Arid Land Geography, 2025, 48(9): 1555-1566. |
| [2] | ZHANG Kexin, ZHAO Yujuan, LI Meiyu. Hail climate characteristics and influencing factors in eastern Gansu Province from 1978 to 2023 [J]. Arid Land Geography, 2025, 48(8): 1374-1384. |
| [3] | WU Shuangmei, ZHOU Dongmei, MA Jing, ZHU Xiaoyan, ZHANG Jun, JIANG Jing, DONG Qinghan. Characteristics of Caragana korshinskii distribution and soil carbon storage in Huan County under different climate scenarios [J]. Arid Land Geography, 2025, 48(5): 812-824. |
| [4] | CHEN Shilong, MENG Qingkai, DAI Yong, YANG Liqiang, WU Han. Geological disaster hazard assessment and prediction in the Ili River Basin based on CMIP6 future scenarios [J]. Arid Land Geography, 2025, 48(4): 599-611. |
| [5] | YAO Di, ZHANG Ziwen, HAN Weiwei. Distinguishing climate- and human-driven water storage anomalies in the Yellow River Basin [J]. Arid Land Geography, 2025, 48(2): 190-201. |
| [6] | KANG Limin, TENG Xinru, CHE Jiahang, HUAI Baojuan. Spatiotemporal variations of snow cover on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(9): 1462-1471. |
| [7] | WANG Nan, LIU Zexuan, ZHENG Jianghua, ZHONG Tao, MENG Chengfeng. Spatiotemporal characteristics and driving forces of glacial lakes in Tianshan Mountains [J]. Arid Land Geography, 2024, 47(9): 1472-1481. |
| [8] | CHAO Bao, ZHAO Yuanyuan, WU Haiyan, LI Yuan, SU Ning. Ecosystem services and its response to climate factors in the Mongolian Plateau from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(9): 1577-1586. |
| [9] | XIA Tingting, XUE Xuan, WANG Haowei, XU Wenzhe, SHENG Ziyi, WANG Yang. Changes in terrestrial water storage and its drivers on the north slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(8): 1292-1303. |
| [10] | ZHU Chenggang, CHEN Yaning, ZHANG Mingjun, CHE Yanjun, SUN Meiping, ZHAO Ruifeng, WANG Yang, LIU Yuting. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(7): 1097-1105. |
| [11] | ZHANG Jing, MA Long, LIU Tingxi, SUN Bolin, QIAO Zixu. Reconstruction of the minimum temperature over the past 202 years based on tree rings of Picea crassifolia in the Helan Mountains [J]. Arid Land Geography, 2024, 47(6): 909-921. |
| [12] | FAN Jing, SHEN Yanbo, CHANG Rui. Impact of climate change on the selection of typical meteorological years in solar energy resource assessment [J]. Arid Land Geography, 2024, 47(6): 922-931. |
| [13] | LI Hui, LIU Tiejun, WANG Shaohui, LIU Dongwei. Spatial and temporal variation of water use efficiency and its influencing factors in desert steppe of Inner Mongolia from 2001 to 2021 [J]. Arid Land Geography, 2024, 47(6): 993-1003. |
| [14] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
| [15] | ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(4): 561-575. |
|
||
