Arid Land Geography ›› 2024, Vol. 47 ›› Issue (5): 753-761.doi: 10.12118/j.issn.1000-6060.2023.481
• The Third Xinjiang Scientific Expedition • Previous Articles Next Articles
LI Xiaodeng1,2(), CHANG Liang1,3, DUAN Rui1, WANG Qian1, YANG Zedong2, ZHANG Qunhui1, ZHANG Pengwei2
Received:
2023-09-05
Revised:
2023-11-14
Online:
2024-05-25
Published:
2024-05-30
LI Xiaodeng, CHANG Liang, DUAN Rui, WANG Qian, YANG Zedong, ZHANG Qunhui, ZHANG Pengwei. Chemical characteristics and evolution of groundwater in the middle and lower reaches of Hotan River Basin[J].Arid Land Geography, 2024, 47(5): 753-761.
Tab. 1
Statistical results of hydrochemical parameters of groundwater"
统计参数 | K+ /mg·L-1 | Na+ /mg·L-1 | Ca2+ /mg·L-1 | Mg2+ /mg·L-1 | Cl- /mg·L-1 | SO42- /mg·L-1 | HCO3- /mg·L-1 | NO3- /mg·L-1 | pH | TDS /mg·L-1 | TH /mg·L-1 |
---|---|---|---|---|---|---|---|---|---|---|---|
极差 | 35.30 | 428.57 | 108.77 | 116.83 | 638.10 | 411.52 | 559.16 | 18.49 | 0.57 | 1652.31 | 555.20 |
最小值 | 9.56 | 88.70 | 39.33 | 21.93 | 141.80 | 119.86 | 147.73 | 0.25 | 7.59 | 643.50 | 188.40 |
最大值 | 44.86 | 517.27 | 148.10 | 138.76 | 779.90 | 531.38 | 706.89 | 18.74 | 8.16 | 2295.82 | 743.60 |
平均值 | 19.41 | 244.42 | 80.83 | 58.75 | 352.78 | 235.87 | 341.50 | 4.84 | 7.88 | 1168.72 | 438.87 |
标准差 | 8.32 | 123.48 | 33.77 | 29.61 | 183.43 | 92.58 | 134.30 | 4.53 | 0.17 | 447.83 | 150.83 |
变异系数 | 0.43 | 0.51 | 0.42 | 0.50 | 0.52 | 0.39 | 0.39 | 0.94 | 0.02 | 0.38 | 0.34 |
Tab. 2
Correlation coefficient matrix of groundwater hydrochemical parameters"
水化学参数 | K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | NO3- | pH | TDS | TH |
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | 1.00 | 0.72 | -0.10 | 0.80 | 0.60 | 0.79 | 0.75 | -0.04 | -0.02 | 0.78 | 0.58 |
Na+ | - | 1.00 | -0.22 | 0.74 | 0.94 | 0.82 | 0.41 | 0.15 | 0.13 | 0.94 | 0.48 |
Ca2+ | - | - | 1.00 | 0.08 | -0.10 | 0.19 | 0.36 | -0.14 | -0.58 | 0.07 | 0.63 |
Mg2+ | - | - | - | 1.00 | 0.78 | 0.75 | 0.76 | -0.07 | 0.04 | 0.88 | 0.81 |
Cl- | - | - | - | - | 1.00 | 0.73 | 0.35 | 0.21 | 0.19 | 0.93 | 0.57 |
SO42- | - | - | - | - | - | 1.00 | 0.64 | -0.21 | -0.17 | 0.90 | 0.71 |
HCO3- | - | - | - | - | - | - | 1.00 | -0.13 | -0.34 | 0.63 | 0.78 |
NO3- | - | - | - | - | - | - | - | 1.00 | 0.02 | 0.06 | -0.11 |
pH | - | - | - | - | - | - | - | - | 1.00 | -0.02 | -0.29 |
TDS | - | - | - | - | - | - | - | - | - | 1.00 | 0.74 |
TH | - | - | - | - | - | - | - | - | - | - | 1.00 |
Tab. 3
Eigenvalues of correlation matrix and cumulative variance contribution rate"
成份 | 初始特征值 | ||
---|---|---|---|
特征值 | 方差贡献率/% | 方差累计贡献率/% | |
1 | 6.13 | 55.75 | 55.75 |
2 | 2.21 | 20.12 | 75.87 |
3 | 1.07 | 9.73 | 85.59 |
4 | 0.67 | 6.09 | 91.68 |
5 | 0.59 | 5.36 | 97.05 |
6 | 0.20 | 1.81 | 98.86 |
7 | 0.09 | 0.79 | 99.65 |
8 | 0.03 | 0.27 | 99.91 |
9 | 0.01 | 0.07 | 99.98 |
10 | 0.00 | 0.02 | 100.00 |
11 | 0.00 | 0.00 | 100.00 |
Tab. 5
Main ion compositions of samples on the simulated path"
编号 | K+/mg·L-1 | Na+/mg·L-1 | Ca2+/mg·L-1 | Mg2+/mg·L-1 | Cl-/mg·L-1 | SO42-/mg·L-1 | HCO3-/mg·L-1 | TDS/mg·L-1 | pH |
---|---|---|---|---|---|---|---|---|---|
G5 | 20.48 | 227.74 | 76.26 | 94.70 | 360.88 | 231.25 | 488.36 | 1259.41 | 7.87 |
G9 | 23.19 | 385.31 | 68.63 | 66.95 | 588.47 | 246.55 | 256.39 | 1527.57 | 7.94 |
G10 | 23.29 | 302.92 | 123.22 | 63.29 | 410.51 | 349.96 | 439.52 | 1495.24 | 7.59 |
G13 | 44.86 | 517.27 | 102.35 | 118.56 | 623.92 | 531.38 | 706.89 | 2295.82 | 7.65 |
Tab. 6
Mineral saturation index"
可能矿物相 | 饱和指数 | |||||
---|---|---|---|---|---|---|
矿物名称 | 分子式 | G5 | G9 | G10 | G13 | |
硬石膏 | CaSO4 | -1.26 | -1.27 | -0.89 | -0.91 | |
文石 | CaCO3 | 0.86 | 0.61 | 0.70 | 0.81 | |
方解石 | CaCO3 | 1.00 | 0.75 | 0.85 | 0.96 | |
CO2 | CO2 | -2.27 | -2.61 | -2.04 | -1.90 | |
白云石 | CaMg(CO3)2 | 2.45 | 1.85 | 1.75 | 2.32 | |
石膏 | CaSO4·2H2O | -1.04 | -1.05 | -0.67 | -0.69 | |
盐岩 | NaCl | -5.74 | -5.30 | -5.57 | -5.18 |
Tab. 7
Results of reverse hydrogeochemical simulations"
路径 | 矿物转移量 | |||||||
---|---|---|---|---|---|---|---|---|
岩盐/mmol·L-1 | 石膏/mmol·L-1 | 高岭土/mmol·L-1 | 钙蒙脱石/mmol·L-1 | CO2/g | 方解石/mmol·L-1 | 黑云母/mmol·L-1 | 白云石/mmol·L-1 | |
G5→G9 | +5.27×10-3 | +1.76×10-3 | +8.70×10-5 | -1.05×10-4 | +1.69×10-3 | -2.12×10-3 | +7.03×10-5 | -1.76×10-3 |
G9→G10 | -5.03×10-4 | +2.80×10-4 | +2.63×10-6 | -3.17×10-6 | -1.06×10-3 | -4.10×10-3 | +2.16×10-6 | -1.64×10-3 |
G10→G13 | +6.05×10-3 | +1.86×10-3 | +6.88×10-4 | -8.29×10-4 | -4.03×10-3 | -5.90×10-3 | +5.56×10-4 | -3.14×10-3 |
[1] | 郭钰颖, 吕智超, 王广才, 等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探, 2016, 44(6): 101-105. |
[Guo Yuying, Lü Zhichao, Wang Guangcai, et al. Hydrogeochemical simulation of groundwater in eastern Fengfeng mining area[J]. Coal Geology & Exploration, 2016, 44(6): 101-105. ] | |
[2] | 邵杰, 李瑛, 侯光才, 等. 新疆伊犁河谷地下水化学特征及其形成作用[J]. 干旱区资源与环境, 2017, 31(4): 99-105. |
[Shao Jie, Li Ying, Hou Guangcai, et al. Chemical characteristics of groundwater in Yili River valley of Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(4): 99-105. ] | |
[3] | 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545. |
[Zhang Tao, Cai Wutian, Li Yingzhi, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017, 38(11): 4537-4545. ] | |
[4] | Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, north western China[J]. Journal of Arid Land, 2014, 6(4): 378-388. ] |
[5] | 洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44(1): 11-18. |
[Hong Tao, Xie Yunqiu, Yu Qiwen, et al. Hydrochemical characteristic study and genetic analysis of groundwater in a key region of the Wumeng Mountain, southwestern China[J]. Earth and Environment, 2016, 44(1): 11-18. ] | |
[6] | 曾妍妍, 周金龙, 贾瑞亮, 等. 新疆祁漫塔格地区地表水水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(6): 64-70. |
[Zeng Yanyan, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristic and causes of surface water in Qimantage area, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 64-70. ] | |
[7] | 任孝宗, 刘敏, 张迎珍, 等. 基于Matlab的Durov三线图的实现[J]. 干旱区地理, 2018, 41(4): 744-750. |
[Ren Xiaozong, Liu Min, Zhang Yingzhen, et al. Plotting Durov diagram based on Matlab[J]. Arid Land Geography, 2018, 41(4): 744-750. ] | |
[8] | 张勇军, 杨余辉, 胡义成, 等. 新疆喀什河流域水化学时空变化特征及灌溉适应性评价[J]. 干旱区地理, 2023, 46(4): 583-594. |
[Zhang Yongjun, Yang Yuhui, Hu Yicheng, et al. Temporal and spatial variation characteristics of hydrochemistry and irrigation adaptability evaluation in Kashi River Basin, Xinjiang[J]. Arid Land Geography, 2023, 46(4): 583-594. ] | |
[9] | 杨锐, 周金龙, 张杰, 等. 新疆和田地区平原区地下水硬度空间分布及影响因素分析[J]. 环境化学, 2020, 3(11): 3255-3263. |
[Yang Rui, Zhou Jinlong, Zhang Jie, et al. Analysis on spatial distribution and influencing factors of groundwater hardness in the plain area of Hetian Prefecture, Xinjiang[J]. Environmental Chemistry, 2020, 39(11): 3255-3263. ] | |
[10] | 李玲, 邵龙美, 周金龙, 等. 新疆和田河流域绿洲区地下水质量演化特征[J]. 水资源与水工程学报, 2021, 32(1): 63-71. |
[Li Ling, Shao Longmei, Zhou Jinlong, et al. Evolution characteristics of groundwater quality in Hotan River Basin oasis, Xinjiang[J]. Journal of Water Resources & Water Engineering, 2021, 32(1): 63-71. ] | |
[11] | Soumya B S, Sekhar M, Riotte J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, south India[J]. Geoderma, 2011, 165(1): 12-24. |
[12] | 何军, 肖攀, 许珂, 等. 江汉平原西缘地下水水文地球化学过程研究[J]. 人民长江, 2018, 49(5): 6-10. |
[He Jun, Xiao Pan, Xu Ke, et al. Hydro-geochemical process of groundwater in western margin of Jianghan Plain[J]. Yangtze River, 2018, 49(5): 6-10. ] | |
[13] | 陈陆望, 许冬清, 刘延娴, 等. 宿县矿区主要突水含水层水文地球化学模拟[J]. 安徽理工大学学报(自然科学版), 2017, 37(6): 27-33. |
[Chen Luwang, Xu Dongqing, Liu Yanxian, et al. Study on hydrogeochemical simulation of main inrush aquifers in the Suxian mining area[J]. Journal of Anhui University of Science and Technology (Natural Science Edition), 2017, 37(6): 27-33. ] | |
[14] | 李海花, 闵月, 李桉孛, 等. 昆仑山北麓两次极端暴雨水汽特征对比分析[J]. 干旱区地理, 2022, 45(3): 715-724. |
[Li Haihua, Min Yue, Li Anbei, et al. Comparative analysis of on water vapor characteristics of two extreme rainstorms in the north slope of Kunlun Mountains[J]. Arid Land Geography, 2022, 45(3): 715-724. ] | |
[15] | 顾玮, 古丽·加帕尔, 尹瀚民, 等. 新疆南疆地区太阳能资源时空分布特征及区划研究[J]. 干旱区地理, 2021, 44(6): 1665-1675. |
[Gu Wei, Jiapaer Guli, Yin Hanmin, et al. Spatial and temporal distribution characteristic and division research of solar energy resources in southern Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1665-1675. ] | |
[16] | Zhao X Y. Impacts of human activity on environment in the high-cold pasturing area: A case of Gannan pasturing area[J]. Acta Ecologica Sinica, 2010, 30(3): 141-149. |
[17] | 纪媛媛, 贾瑞亮, 周金龙, 等. 新疆伊犁河谷地地下水质量与污染评价[J]. 节水灌溉, 2014(3): 32-37. |
[Ji Yuanyuan, Jia Ruiliang, Zhou Jinlong, et al. Assessment of groundwater quality and pollution in Ili River Valley of Xinjiang[J]. Journal of Water Saving and Irrigation, 2014(3): 32-37. ] | |
[18] | 刘久潭, 高宗军, 马媛媛, 等. 堆龙河河谷平原下游地下水水质变化特征[J]. 水电能源科学, 2018, 36(8): 39-42. |
[Liu Jiutan, Gao Zongjun, Ma Yuanyuan, et al. Characteristics of groundwater quality change in the lower reaches of Duilong River Valley Plain[J]. Water Resources and Power, 2018, 36(8): 39-42. ] | |
[19] |
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
doi: 10.1126/science.170.3962.1088 pmid: 17777828 |
[20] | 栾凤娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389. |
[Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389. ] | |
[21] | 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征与演化规律[J]. 环境科学, 2019, 42(9): 4041-4052. |
[Wei Xing, Zhou Jinlong, Nai Weihua, et al. Hydrochemical characteristic and evolution of groundwater in the Kashgar Delta Area in Xinjiang[J]. Environmental Science, 2019, 42(9): 4041-4052. ] | |
[22] |
韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
doi: 10.11867/j.issn.1001-8166.2005.04.0394 |
[Han Guilin, Liu Congqiang. Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in karst terrain[J]. Advances in Earth Science, 2005, 20(4): 394-406. ]
doi: 10.11867/j.issn.1001-8166.2005.04.0394 |
|
[23] | Li S Y, Xu Z F, Wang H, et al. Geochemistry of the upper Han River Basin, China[J]. Chemical Geology, 2009, 264(1-4): 89-95. |
[24] | 李会亚, 冯起, 陈丽娟, 等. 民勤绿洲灌区地下水水化学特征及其演化驱动机理[J]. 干旱区研究, 2017, 34(4): 733-740. |
[Li Huiya, Feng Qi, Chen Lijuan, et al. Hydrochemical characteristic and evolution mechanism of groundwater in the Minqin Oasis[J]. Arid Zone Research, 2017, 34(4): 733-740. ] | |
[25] | Singh N, Singh R, Kamal V, et al. Assessment of hydrogeochemistry and the quality of groundwater in 24-Parganas districts, west Bengal[J]. Environmental Earth Sciences, 2015, 73(1): 375-386. |
[26] | 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水反向水文地球化学模拟[J]. 干旱区资源与环境, 2017, 31(10): 65-70. |
[Zhao Jiangtao, Zhou Jinlong, Liang Chuan, et al. Reverse hydrogeochemical simulation of groundwater in the plain area of Yanqi Basin, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 65-70. ] | |
[27] | 杨奇越, 段磊, 康华, 等. 榆神地区反向水文地球化学模拟[J]. 中国科技信息, 2018(增刊1): 103-105. |
[Yang Qiyue, Duan Lei, Kang Hua, et al. Reverse hydrogeochemical simulation of Yushen area[J]. China Science and Technology Information, 2018(Suppl. 1): 103-105. ] | |
[28] | 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 14-15. |
[Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. Basic course for hydrographic geochemistry[M]. Beijing: Geology Press, 1993: 14-15. ] |
[1] | GONG Dongdong, GAO Fan, WU Bin, LIU Kun. Spatiotemporal change of groundwater drought in the plain area of Xinjiang based on GRACE and its response to meteorological drought [J]. Arid Land Geography, 2024, 47(9): 1496-1507. |
[2] | LYU Wengai, JIANG Yuwei, MA Xingyu, LIU Lei, XUE Jie, ZHANG Bo, HUANG Caibian. Chemical characteristics of surface water and groundwater in plain area of the Qargan River Basin on the north slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(10): 1617-1627. |
[3] | LIU Jingming, DING Jianli, BAO Qingling, ZHANG Zipeng, JIANG Leipeng, QU Yi. Characteristics of groundwater in Ebinur Lake Basin using isotopes method [J]. Arid Land Geography, 2023, 46(2): 201-210. |
[4] | DENG Chun, JIANG Xiaohui, SUN Weifeng. Groundwater storage and population exposure in the Yellow River Basin based on GRACE data [J]. Arid Land Geography, 2022, 45(6): 1836-1846. |
[5] | LIU Shengfeng,GAO Bai,ZHANG Haiyang,FAN Hua,JIANG Wenbo. Evaluation of groundwater quality and fluoride enrichment characteristics in western Tarim Basin: A case study of Akto County [J]. Arid Land Geography, 2021, 44(5): 1261-1271. |
[6] | WEI Shiyu,GUO Yuntong,CUI Yali,ZHANG Qiulan,SHAO Jingli. Dynamic characteristics of groundwater level and storage variables in Minqin from 1985 to 2016 [J]. Arid Land Geography, 2021, 44(5): 1272-1280. |
[7] | HAO Shuai,LI Fadong,LI Yanhong,ZHU Nong,QIAO Yunfeng,TIAN Chao,YANG Han,FU Kai. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin [J]. Arid Land Geography, 2021, 44(4): 934-942. |
[8] | CHEN Yaning,Wumaierjiang Wubuli,Aikeremu Abula,CHENG Yong,CHEN Yapeng,HAO Xingming,ZHU Chenggang,WANG Yang. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years [J]. Arid Land Geography, 2021, 44(3): 605-611. |
[9] | ZHOU Honghua,CHEN Yapeng,YANG Yuhai,ZHU Chenggang. Effects of ecological water conveyance on the growth characteristics of Populus euphtatica in the lower reaches of Tarim River based on tree-rings [J]. Arid Land Geography, 2021, 44(3): 643-650. |
[10] | CHEN Yongjin,Aikeremu Abula,ZHANG Tianju,CHEN Yapeng,ZHU Chenggang,CHENG Yong,LIU Lu,LI Xiaoyang,ZHANG Qifei. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 651-658. |
[11] | DI Zhenhua,XIE Zhenghui,CHEN Yaning. Estimation of riparian groundwater table depth in the lower reaches of Tarim River under long-term water conveyance [J]. Arid Land Geography, 2021, 44(3): 659-669. |
[12] | WANG Wanrui,Aikeremu Abula,CHEN Yaning,ZHU Chenggang,CHEN Yapeng. Groundwater recharge during ecological water conveyance in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 670-680. |
[13] | HAO Haichao,HAO Xingming,CHENG Xiaoli,ZHANG Jingjing,FAN Xue,LI Yuanhang. Effects of ecological water conveyance on water use efficiency of desert riparian forest ecosystem in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 691-699. |
[14] | ZHANG Jingjing,HAO Haichao,HAO Xingming,FAN Xue,LI Yuanhang. Effects of ecological water conveyance on NPP of natural vegetation in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 708-717. |
[15] | TANG Min,ZHANG Feng,SHI Qingdong. Variations in groundwater table depth at Daliyaboyi Oasis, Keriya River, China [J]. Arid Land Geography, 2021, 44(1): 80-88. |
|