Arid Land Geography ›› 2024, Vol. 47 ›› Issue (5): 753-761.doi: 10.12118/j.issn.1000-6060.2023.481
• The Third Xinjiang Scientific Expedition • Previous Articles Next Articles
LI Xiaodeng1,2(), CHANG Liang1,3, DUAN Rui1, WANG Qian1, YANG Zedong2, ZHANG Qunhui1, ZHANG Pengwei2
Received:
2023-09-05
Revised:
2023-11-14
Online:
2024-05-25
Published:
2024-05-30
LI Xiaodeng, CHANG Liang, DUAN Rui, WANG Qian, YANG Zedong, ZHANG Qunhui, ZHANG Pengwei. Chemical characteristics and evolution of groundwater in the middle and lower reaches of Hotan River Basin[J].Arid Land Geography, 2024, 47(5): 753-761.
Tab. 1
Statistical results of hydrochemical parameters of groundwater"
统计参数 | K+ /mg·L-1 | Na+ /mg·L-1 | Ca2+ /mg·L-1 | Mg2+ /mg·L-1 | Cl- /mg·L-1 | SO42- /mg·L-1 | HCO3- /mg·L-1 | NO3- /mg·L-1 | pH | TDS /mg·L-1 | TH /mg·L-1 |
---|---|---|---|---|---|---|---|---|---|---|---|
极差 | 35.30 | 428.57 | 108.77 | 116.83 | 638.10 | 411.52 | 559.16 | 18.49 | 0.57 | 1652.31 | 555.20 |
最小值 | 9.56 | 88.70 | 39.33 | 21.93 | 141.80 | 119.86 | 147.73 | 0.25 | 7.59 | 643.50 | 188.40 |
最大值 | 44.86 | 517.27 | 148.10 | 138.76 | 779.90 | 531.38 | 706.89 | 18.74 | 8.16 | 2295.82 | 743.60 |
平均值 | 19.41 | 244.42 | 80.83 | 58.75 | 352.78 | 235.87 | 341.50 | 4.84 | 7.88 | 1168.72 | 438.87 |
标准差 | 8.32 | 123.48 | 33.77 | 29.61 | 183.43 | 92.58 | 134.30 | 4.53 | 0.17 | 447.83 | 150.83 |
变异系数 | 0.43 | 0.51 | 0.42 | 0.50 | 0.52 | 0.39 | 0.39 | 0.94 | 0.02 | 0.38 | 0.34 |
Tab. 2
Correlation coefficient matrix of groundwater hydrochemical parameters"
水化学参数 | K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | NO3- | pH | TDS | TH |
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | 1.00 | 0.72 | -0.10 | 0.80 | 0.60 | 0.79 | 0.75 | -0.04 | -0.02 | 0.78 | 0.58 |
Na+ | - | 1.00 | -0.22 | 0.74 | 0.94 | 0.82 | 0.41 | 0.15 | 0.13 | 0.94 | 0.48 |
Ca2+ | - | - | 1.00 | 0.08 | -0.10 | 0.19 | 0.36 | -0.14 | -0.58 | 0.07 | 0.63 |
Mg2+ | - | - | - | 1.00 | 0.78 | 0.75 | 0.76 | -0.07 | 0.04 | 0.88 | 0.81 |
Cl- | - | - | - | - | 1.00 | 0.73 | 0.35 | 0.21 | 0.19 | 0.93 | 0.57 |
SO42- | - | - | - | - | - | 1.00 | 0.64 | -0.21 | -0.17 | 0.90 | 0.71 |
HCO3- | - | - | - | - | - | - | 1.00 | -0.13 | -0.34 | 0.63 | 0.78 |
NO3- | - | - | - | - | - | - | - | 1.00 | 0.02 | 0.06 | -0.11 |
pH | - | - | - | - | - | - | - | - | 1.00 | -0.02 | -0.29 |
TDS | - | - | - | - | - | - | - | - | - | 1.00 | 0.74 |
TH | - | - | - | - | - | - | - | - | - | - | 1.00 |
Tab. 3
Eigenvalues of correlation matrix and cumulative variance contribution rate"
成份 | 初始特征值 | ||
---|---|---|---|
特征值 | 方差贡献率/% | 方差累计贡献率/% | |
1 | 6.13 | 55.75 | 55.75 |
2 | 2.21 | 20.12 | 75.87 |
3 | 1.07 | 9.73 | 85.59 |
4 | 0.67 | 6.09 | 91.68 |
5 | 0.59 | 5.36 | 97.05 |
6 | 0.20 | 1.81 | 98.86 |
7 | 0.09 | 0.79 | 99.65 |
8 | 0.03 | 0.27 | 99.91 |
9 | 0.01 | 0.07 | 99.98 |
10 | 0.00 | 0.02 | 100.00 |
11 | 0.00 | 0.00 | 100.00 |
Tab. 5
Main ion compositions of samples on the simulated path"
编号 | K+/mg·L-1 | Na+/mg·L-1 | Ca2+/mg·L-1 | Mg2+/mg·L-1 | Cl-/mg·L-1 | SO42-/mg·L-1 | HCO3-/mg·L-1 | TDS/mg·L-1 | pH |
---|---|---|---|---|---|---|---|---|---|
G5 | 20.48 | 227.74 | 76.26 | 94.70 | 360.88 | 231.25 | 488.36 | 1259.41 | 7.87 |
G9 | 23.19 | 385.31 | 68.63 | 66.95 | 588.47 | 246.55 | 256.39 | 1527.57 | 7.94 |
G10 | 23.29 | 302.92 | 123.22 | 63.29 | 410.51 | 349.96 | 439.52 | 1495.24 | 7.59 |
G13 | 44.86 | 517.27 | 102.35 | 118.56 | 623.92 | 531.38 | 706.89 | 2295.82 | 7.65 |
Tab. 7
Results of reverse hydrogeochemical simulations"
路径 | 矿物转移量 | |||||||
---|---|---|---|---|---|---|---|---|
岩盐/mmol·L-1 | 石膏/mmol·L-1 | 高岭土/mmol·L-1 | 钙蒙脱石/mmol·L-1 | CO2/g | 方解石/mmol·L-1 | 黑云母/mmol·L-1 | 白云石/mmol·L-1 | |
G5→G9 | +5.27×10-3 | +1.76×10-3 | +8.70×10-5 | -1.05×10-4 | +1.69×10-3 | -2.12×10-3 | +7.03×10-5 | -1.76×10-3 |
G9→G10 | -5.03×10-4 | +2.80×10-4 | +2.63×10-6 | -3.17×10-6 | -1.06×10-3 | -4.10×10-3 | +2.16×10-6 | -1.64×10-3 |
G10→G13 | +6.05×10-3 | +1.86×10-3 | +6.88×10-4 | -8.29×10-4 | -4.03×10-3 | -5.90×10-3 | +5.56×10-4 | -3.14×10-3 |
[1] | 郭钰颖, 吕智超, 王广才, 等. 峰峰矿区东部地下水水文地球化学模拟[J]. 煤田地质与勘探, 2016, 44(6): 101-105. |
[Guo Yuying, Lü Zhichao, Wang Guangcai, et al. Hydrogeochemical simulation of groundwater in eastern Fengfeng mining area[J]. Coal Geology & Exploration, 2016, 44(6): 101-105. ] | |
[2] | 邵杰, 李瑛, 侯光才, 等. 新疆伊犁河谷地下水化学特征及其形成作用[J]. 干旱区资源与环境, 2017, 31(4): 99-105. |
[Shao Jie, Li Ying, Hou Guangcai, et al. Chemical characteristics of groundwater in Yili River valley of Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(4): 99-105. ] | |
[3] | 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545. |
[Zhang Tao, Cai Wutian, Li Yingzhi, et al. Major ionic features and their possible controls in the water of the Niyang River Basin[J]. Environmental Science, 2017, 38(11): 4537-4545. ] | |
[4] | Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in the Turpan Basin, north western China[J]. Journal of Arid Land, 2014, 6(4): 378-388. ] |
[5] | 洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44(1): 11-18. |
[Hong Tao, Xie Yunqiu, Yu Qiwen, et al. Hydrochemical characteristic study and genetic analysis of groundwater in a key region of the Wumeng Mountain, southwestern China[J]. Earth and Environment, 2016, 44(1): 11-18. ] | |
[6] | 曾妍妍, 周金龙, 贾瑞亮, 等. 新疆祁漫塔格地区地表水水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(6): 64-70. |
[Zeng Yanyan, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristic and causes of surface water in Qimantage area, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 64-70. ] | |
[7] | 任孝宗, 刘敏, 张迎珍, 等. 基于Matlab的Durov三线图的实现[J]. 干旱区地理, 2018, 41(4): 744-750. |
[Ren Xiaozong, Liu Min, Zhang Yingzhen, et al. Plotting Durov diagram based on Matlab[J]. Arid Land Geography, 2018, 41(4): 744-750. ] | |
[8] | 张勇军, 杨余辉, 胡义成, 等. 新疆喀什河流域水化学时空变化特征及灌溉适应性评价[J]. 干旱区地理, 2023, 46(4): 583-594. |
[Zhang Yongjun, Yang Yuhui, Hu Yicheng, et al. Temporal and spatial variation characteristics of hydrochemistry and irrigation adaptability evaluation in Kashi River Basin, Xinjiang[J]. Arid Land Geography, 2023, 46(4): 583-594. ] | |
[9] | 杨锐, 周金龙, 张杰, 等. 新疆和田地区平原区地下水硬度空间分布及影响因素分析[J]. 环境化学, 2020, 3(11): 3255-3263. |
[Yang Rui, Zhou Jinlong, Zhang Jie, et al. Analysis on spatial distribution and influencing factors of groundwater hardness in the plain area of Hetian Prefecture, Xinjiang[J]. Environmental Chemistry, 2020, 39(11): 3255-3263. ] | |
[10] | 李玲, 邵龙美, 周金龙, 等. 新疆和田河流域绿洲区地下水质量演化特征[J]. 水资源与水工程学报, 2021, 32(1): 63-71. |
[Li Ling, Shao Longmei, Zhou Jinlong, et al. Evolution characteristics of groundwater quality in Hotan River Basin oasis, Xinjiang[J]. Journal of Water Resources & Water Engineering, 2021, 32(1): 63-71. ] | |
[11] | Soumya B S, Sekhar M, Riotte J, et al. Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, south India[J]. Geoderma, 2011, 165(1): 12-24. |
[12] | 何军, 肖攀, 许珂, 等. 江汉平原西缘地下水水文地球化学过程研究[J]. 人民长江, 2018, 49(5): 6-10. |
[He Jun, Xiao Pan, Xu Ke, et al. Hydro-geochemical process of groundwater in western margin of Jianghan Plain[J]. Yangtze River, 2018, 49(5): 6-10. ] | |
[13] | 陈陆望, 许冬清, 刘延娴, 等. 宿县矿区主要突水含水层水文地球化学模拟[J]. 安徽理工大学学报(自然科学版), 2017, 37(6): 27-33. |
[Chen Luwang, Xu Dongqing, Liu Yanxian, et al. Study on hydrogeochemical simulation of main inrush aquifers in the Suxian mining area[J]. Journal of Anhui University of Science and Technology (Natural Science Edition), 2017, 37(6): 27-33. ] | |
[14] | 李海花, 闵月, 李桉孛, 等. 昆仑山北麓两次极端暴雨水汽特征对比分析[J]. 干旱区地理, 2022, 45(3): 715-724. |
[Li Haihua, Min Yue, Li Anbei, et al. Comparative analysis of on water vapor characteristics of two extreme rainstorms in the north slope of Kunlun Mountains[J]. Arid Land Geography, 2022, 45(3): 715-724. ] | |
[15] | 顾玮, 古丽·加帕尔, 尹瀚民, 等. 新疆南疆地区太阳能资源时空分布特征及区划研究[J]. 干旱区地理, 2021, 44(6): 1665-1675. |
[Gu Wei, Jiapaer Guli, Yin Hanmin, et al. Spatial and temporal distribution characteristic and division research of solar energy resources in southern Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1665-1675. ] | |
[16] | Zhao X Y. Impacts of human activity on environment in the high-cold pasturing area: A case of Gannan pasturing area[J]. Acta Ecologica Sinica, 2010, 30(3): 141-149. |
[17] | 纪媛媛, 贾瑞亮, 周金龙, 等. 新疆伊犁河谷地地下水质量与污染评价[J]. 节水灌溉, 2014(3): 32-37. |
[Ji Yuanyuan, Jia Ruiliang, Zhou Jinlong, et al. Assessment of groundwater quality and pollution in Ili River Valley of Xinjiang[J]. Journal of Water Saving and Irrigation, 2014(3): 32-37. ] | |
[18] | 刘久潭, 高宗军, 马媛媛, 等. 堆龙河河谷平原下游地下水水质变化特征[J]. 水电能源科学, 2018, 36(8): 39-42. |
[Liu Jiutan, Gao Zongjun, Ma Yuanyuan, et al. Characteristics of groundwater quality change in the lower reaches of Duilong River Valley Plain[J]. Water Resources and Power, 2018, 36(8): 39-42. ] | |
[19] |
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
doi: 10.1126/science.170.3962.1088 pmid: 17777828 |
[20] | 栾凤娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389. |
[Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389. ] | |
[21] | 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征与演化规律[J]. 环境科学, 2019, 42(9): 4041-4052. |
[Wei Xing, Zhou Jinlong, Nai Weihua, et al. Hydrochemical characteristic and evolution of groundwater in the Kashgar Delta Area in Xinjiang[J]. Environmental Science, 2019, 42(9): 4041-4052. ] | |
[22] |
韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.
doi: 10.11867/j.issn.1001-8166.2005.04.0394 |
[Han Guilin, Liu Congqiang. Hydrogeochemistry of rivers in Guizhou Province, China: Constraints on crustal weathering in karst terrain[J]. Advances in Earth Science, 2005, 20(4): 394-406. ]
doi: 10.11867/j.issn.1001-8166.2005.04.0394 |
|
[23] | Li S Y, Xu Z F, Wang H, et al. Geochemistry of the upper Han River Basin, China[J]. Chemical Geology, 2009, 264(1-4): 89-95. |
[24] | 李会亚, 冯起, 陈丽娟, 等. 民勤绿洲灌区地下水水化学特征及其演化驱动机理[J]. 干旱区研究, 2017, 34(4): 733-740. |
[Li Huiya, Feng Qi, Chen Lijuan, et al. Hydrochemical characteristic and evolution mechanism of groundwater in the Minqin Oasis[J]. Arid Zone Research, 2017, 34(4): 733-740. ] | |
[25] | Singh N, Singh R, Kamal V, et al. Assessment of hydrogeochemistry and the quality of groundwater in 24-Parganas districts, west Bengal[J]. Environmental Earth Sciences, 2015, 73(1): 375-386. |
[26] | 赵江涛, 周金龙, 梁川, 等. 新疆焉耆盆地平原区地下水反向水文地球化学模拟[J]. 干旱区资源与环境, 2017, 31(10): 65-70. |
[Zhao Jiangtao, Zhou Jinlong, Liang Chuan, et al. Reverse hydrogeochemical simulation of groundwater in the plain area of Yanqi Basin, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2017, 31(10): 65-70. ] | |
[27] | 杨奇越, 段磊, 康华, 等. 榆神地区反向水文地球化学模拟[J]. 中国科技信息, 2018(增刊1): 103-105. |
[Yang Qiyue, Duan Lei, Kang Hua, et al. Reverse hydrogeochemical simulation of Yushen area[J]. China Science and Technology Information, 2018(Suppl. 1): 103-105. ] | |
[28] | 沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993: 14-15. |
[Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. Basic course for hydrographic geochemistry[M]. Beijing: Geology Press, 1993: 14-15. ] |
[1] | LIU Jingming, DING Jianli, BAO Qingling, ZHANG Zipeng, JIANG Leipeng, QU Yi. Characteristics of groundwater in Ebinur Lake Basin using isotopes method [J]. Arid Land Geography, 2023, 46(2): 201-210. |
[2] | DENG Chun, JIANG Xiaohui, SUN Weifeng. Groundwater storage and population exposure in the Yellow River Basin based on GRACE data [J]. Arid Land Geography, 2022, 45(6): 1836-1846. |
[3] | LIU Shengfeng,GAO Bai,ZHANG Haiyang,FAN Hua,JIANG Wenbo. Evaluation of groundwater quality and fluoride enrichment characteristics in western Tarim Basin: A case study of Akto County [J]. Arid Land Geography, 2021, 44(5): 1261-1271. |
[4] | WEI Shiyu,GUO Yuntong,CUI Yali,ZHANG Qiulan,SHAO Jingli. Dynamic characteristics of groundwater level and storage variables in Minqin from 1985 to 2016 [J]. Arid Land Geography, 2021, 44(5): 1272-1280. |
[5] | HAO Shuai,LI Fadong,LI Yanhong,ZHU Nong,QIAO Yunfeng,TIAN Chao,YANG Han,FU Kai. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin [J]. Arid Land Geography, 2021, 44(4): 934-942. |
[6] | CHEN Yaning,Wumaierjiang Wubuli,Aikeremu Abula,CHENG Yong,CHEN Yapeng,HAO Xingming,ZHU Chenggang,WANG Yang. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years [J]. Arid Land Geography, 2021, 44(3): 605-611. |
[7] | ZHOU Honghua,CHEN Yapeng,YANG Yuhai,ZHU Chenggang. Effects of ecological water conveyance on the growth characteristics of Populus euphtatica in the lower reaches of Tarim River based on tree-rings [J]. Arid Land Geography, 2021, 44(3): 643-650. |
[8] | CHEN Yongjin,Aikeremu Abula,ZHANG Tianju,CHEN Yapeng,ZHU Chenggang,CHENG Yong,LIU Lu,LI Xiaoyang,ZHANG Qifei. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 651-658. |
[9] | DI Zhenhua,XIE Zhenghui,CHEN Yaning. Estimation of riparian groundwater table depth in the lower reaches of Tarim River under long-term water conveyance [J]. Arid Land Geography, 2021, 44(3): 659-669. |
[10] | WANG Wanrui,Aikeremu Abula,CHEN Yaning,ZHU Chenggang,CHEN Yapeng. Groundwater recharge during ecological water conveyance in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 670-680. |
[11] | HAO Haichao,HAO Xingming,CHENG Xiaoli,ZHANG Jingjing,FAN Xue,LI Yuanhang. Effects of ecological water conveyance on water use efficiency of desert riparian forest ecosystem in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 691-699. |
[12] | ZHANG Jingjing,HAO Haichao,HAO Xingming,FAN Xue,LI Yuanhang. Effects of ecological water conveyance on NPP of natural vegetation in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 708-717. |
[13] | TANG Min,ZHANG Feng,SHI Qingdong. Variations in groundwater table depth at Daliyaboyi Oasis, Keriya River, China [J]. Arid Land Geography, 2021, 44(1): 80-88. |
[14] |
YANG Yu-fan, CAO Sheng-kui, CAO Guang-chao, LEI Yi-zhen, LIU Ying, LAN Yao.
Recharge characteristics of shallow groundwater in different periods of Shaliu River Basin around the Qinghai Lake [J]. Arid Land Geography, 2020, 43(3): 633-643. |
[15] |
WANG Yushan, GUO Yuan, ZHOU Yinzhu, LI Shu, WANG Qian.
Quantifications of spatial and temporal variations in groundwater discharge into a river using hydrochemical and isotopic tracers [J]. Arid Land Geography, 2020, 43(2): 290-298. |
|