Arid Land Geography ›› 2021, Vol. 44 ›› Issue (5): 1261-1271.doi: 10.12118/j.issn.1000–6060.2021.05.07
• Climatology and Hydrology • Previous Articles Next Articles
LIU Shengfeng1(),GAO Bai1(),ZHANG Haiyang1,FAN Hua2,JIANG Wenbo1
Received:
2020-12-04
Revised:
2021-02-19
Online:
2021-09-25
Published:
2021-09-22
Contact:
Bai GAO
E-mail:1372729482@qq.com;gaobai@ecit.cn
LIU Shengfeng,GAO Bai,ZHANG Haiyang,FAN Hua,JIANG Wenbo. Evaluation of groundwater quality and fluoride enrichment characteristics in western Tarim Basin: A case study of Akto County[J].Arid Land Geography, 2021, 44(5): 1261-1271.
Tab. 2
Statistical characteristics of water quality indicators in western Tarim Basin"
参数 | 浅层水(0~50 m) | 中层水(50~100 m) | 深层水(100~200 m) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最小值 | 最大值 | 均值 | 标准差 | 变异 系数 | 最小值 | 最大值 | 均值 | 标准差 | 变异 系数 | 最小值 | 最大值 | 均值 | 标准差 | 变异 系数 | |||
pH | 7.20 | 7.70 | 7.49 | 0.16 | 0.02 | 7.30 | 8.00 | 7.60 | 0.30 | 0.04 | 7.60 | 8.40 | 7.94 | 0.21 | 0.03 | ||
TDS/mg·L-1 | 321.50 | 2616.30 | 1311.76 | 792.19 | 0.60 | 256.00 | 2963.20 | 932.62 | 1024.84 | 1.10 | 162.40 | 2690.00 | 749.98 | 684.48 | 0.91 | ||
K++Na+/mg·L-1 | 27.10 | 377.10 | 161.13 | 137.09 | 0.85 | 32.00 | 783.80 | 204.40 | 290.09 | 1.42 | 26.80 | 786.90 | 183.11 | 211.00 | 1.15 | ||
Ca2+/mg·L-1 | 53.20 | 157.60 | 97.39 | 38.39 | 0.39 | 36.80 | 174.00 | 85.98 | 48.55 | 0.56 | 24.60 | 165.40 | 63.19 | 38.67 | 0.61 | ||
Mg2+/mg·L-1 | 17.40 | 156.40 | 91.64 | 51.31 | 0.56 | 8.70 | 100.60 | 42.04 | 34.25 | 0.81 | 5.00 | 91.90 | 29.20 | 24.83 | 0.85 | ||
Cl-/mg·L-1 | 17.90 | 629.40 | 260.31 | 207.78 | 0.80 | 43.00 | 797.80 | 208.58 | 294.81 | 1.41 | 15.80 | 810.00 | 190.56 | 217.29 | 1.14 | ||
| 75.20 | 813.60 | 398.10 | 248.02 | 0.62 | 61.20 | 1005.70 | 287.82 | 361.72 | 1.26 | 27.50 | 817.70 | 219.50 | 214.07 | 0.98 | ||
| 186.80 | 641.30 | 424.44 | 164.23 | 0.39 | 99.60 | 417.20 | 224.16 | 116.50 | 0.52 | 80.90 | 263.50 | 144.51 | 54.66 | 0.38 | ||
F-/mg·L-1 | 0.20 | 5.30 | 1.77 | 1.66 | 0.94 | 0.80 | 2.00 | 1.18 | 0.44 | 0.38 | 0.30 | 2.50 | 1.21 | 0.71 | 0.58 |
Tab. 4
Average health risks of fluoride and chloride in the study area /a-1"
参数 | 浅层水(0~50 m) | 中层水(50~100 m) | 深层水(100~200 m) | |||||
---|---|---|---|---|---|---|---|---|
成人 | 儿童 | 成人 | 儿童 | 成人 | 儿童 | |||
F-饮水途径健康风险 | 1.40×10-8 | 1.79×10-8 | 9.35×10-9 | 1.19×10-8 | 9.58×10-9 | 1.22×10-8 | ||
F-皮肤途径健康风险 | 3.26×10-10 | 3.81×10-10 | 2.17×10-10 | 2.54×10-10 | 2.22×10-10 | 2.60×10-10 | ||
Cl-饮水途径健康风险 | 1.24×10-6 | 1.58×10-6 | 9.91×10-7 | 1.27×10-6 | 9.06×10-7 | 1.16×10-6 | ||
Cl-皮肤途径健康风险 | 2.87×10-8 | 3.36×10-8 | 2.30×10-8 | 2.69×10-8 | 2.10×10-8 | 2.46×10-8 | ||
总体健康风险 | 1.28×10-6 | 1.63×10-6 | 1.02×10-6 | 1.30×10-6 | 9.36×10-7 | 1.19×10-6 | ||
国际辐射防护委员会(ICRP)最大可接受风险 | 5×10-5 | |||||||
美国环境保护署(US EPA)最大可接受风险 | 1×10-4 |
[1] |
Li J, Wang Y, Zhu C, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730:138877, doi: 10.1016/j.scitotenv.2020.138877.
doi: 10.1016/j.scitotenv.2020.138877 |
[2] |
Ripa L W. A half-century of community water fluoridation in the United States: Review and commentary[J]. Journal of Public Health Dentistry, 1993, 53(1):17-44.
pmid: 8474047 |
[3] |
Handa B K. Geochemistry and genesis of fluoride-containing ground waters in India[J]. Groundwater, 1975, 13(3):275-281.
doi: 10.1111/gwat.1975.13.issue-3 |
[4] |
Harrison P T C. Fluoride in water: A UK perspective[J]. Journal of Fluorine Chemistry, 2005, 126(11):1448-1456.
doi: 10.1016/j.jfluchem.2005.09.009 |
[5] | 周天骧. 塔里木河干流流域环境中的氟与地方性氟中毒的关系[J]. 干旱区地理, 1994, 17(1):76-82. |
[ Zhou Tianxiang. Relationship between fluoride content in environment and endemic fluorosis in the basin of main stream of Tarim River[J]. Arid Land Geography, 1994, 17(1):76-82. ] | |
[6] |
Cinti D, Vaselli O, Poncia P P, et al. Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: Quality indexes for management of the water resource[J]. Environmental Pollution, 2019, 253:525-537.
doi: S0269-7491(19)30792-4 pmid: 31330345 |
[7] |
Kapil D B, Tasneem G K, Hassan I A, et al. Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study[J]. Water Research, 2013, 47(3):1005-1020.
doi: 10.1016/j.watres.2012.10.042 |
[8] | Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal[J]. Journal of Hazardous Materials, 2006, B137:456-463. |
[9] |
Ramamohana Rao N V, Rao N, Surya Prakash Rao K, et al. Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India[J]. Environmental Geology, 1993, 21:84-89.
doi: 10.1007/BF00775055 |
[10] |
Zango M S, Sunkari E D, Abu M, et al. Hydrogeochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid north east region of Ghana[J]. Journal of Geochemical Exploration, 2019, 207:106363.
doi: 10.1016/j.gexplo.2019.106363 |
[11] |
Wen D, Zhang F, Zhang E, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135:1-21.
doi: 10.1016/j.gexplo.2013.10.012 |
[12] |
Brindha K, Rajesh R, Murugan R, et al. Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India[J]. Environmental Monitoring and Assessment, 2010, 172(1-4):481-492.
doi: 10.1007/s10661-010-1348-0 |
[13] | Ramanaiah S V, Venkata Mohan S, Rajkumar B, et al. Monitoring of fluoride concentration in ground water of Prakasham District in India: Correlation with physico-chemical parameters[J]. Indian Journal of Environmental Health, 2006, 48(2):129-134. |
[14] | 孙从建, 陈若霞, 张子宇, 等. 山西浅层地下水水化学特性时空变化特征分析[J]. 干旱区地理, 2018, 41(2):314-324. |
[ Sun Congjian, Chen Ruoxia, Zhang Ziyu, et al. Temporal and spatial variation of hydrochemical characteristics of shallow groundwater in Shanxi Province[J]. Arid Land Geography, 2018, 41(2):314-324. ] | |
[15] | 朱海勇, 陈永金, 刘加珍, 等. 塔里木河中下游地下水化学及其演变特征分析[J]. 干旱区地理, 2013, 36(1):8-18. |
[ Zhu Haiyong, Chen Yongjin, Liu Jiazhen, et al. Variation and evolution of groundwater chemistry in the middle and lower reaches of the Tarim River[J]. Arid Land Geography, 2013, 36(1):8-18. ] | |
[16] |
Fuge R. Sources of halogens in the environment, influences on human and animal health[J]. Environmental Geochemistry and Health, 1988, 10(2):51-61.
doi: 10.1007/BF01758592 pmid: 24213594 |
[17] |
Lahermo P, Sandstr M H, Malisa E. The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications[J]. Journal of Geochemical Exploration, 1991, 41(1-2):65-79.
doi: 10.1016/0375-6742(91)90075-6 |
[18] |
Nagaraju A, Thejaswi A, Sun L. Statistical analysis of high fluoride groundwater hydrochemistry in southern India: Quality assessment and implications for source of fluoride[J]. Environmental Engineering Science, 2016, 33(7):471-477.
doi: 10.1089/ees.2015.0511 |
[19] | 张群, 李同贺, 吕晓红. 塔里木盆地西部地区氟分布规律及成因分析[J]. 水资源保护, 2010, 26(4):43-45. |
[ Zhang Qun, Li Tonghe, Lü Xiaohong. Causes of distribution of fluoride in western region of Tarim Basin[J]. Water Resources Protection, 2010, 26(4):43-45. ] | |
[20] | 陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7):1800-1808. |
[ Chen Jinsong, Zhou Jinlong, Chen Yunfei, et al. Spatial distribution and enrichment factors analysis of groundwater fluorine in Kashgar area, Xinjiang[J]. Environmental Chemistry, 2020, 39(7):1800-1808. ] | |
[21] | 张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4):100-106. |
[ Zhang Jie, Zhou Jinlong, Nai Weihua, et al. Characteristics of high fluoride groundwater in plain of Yarkant River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4):100-106. ] | |
[22] | 李小丽, 黎小东, 敖天其. 改进内梅罗指数法在西充河水质评价中的应用[J]. 人民黄河, 2016, 38(8):65-68. |
[ Li Xiaoli, Li Xiaodong, Ao Tianqi. Application of improved Nemerow index method used in water quality Assessment[J]. Yellow River, 2016, 38(8):65-68. ] | |
[23] | 孔令健. 临涣矿采煤沉陷区地下水与地表水水环境特征研究[D]. 合肥: 安徽大学, 2017. |
[ Kong Lingjian. Research on environmental characteristics of groundwater and surface water in coal mining subsidence area of Linhuan Coal Mine[D]. Hefei: Anhui University, 2017. ] | |
[24] |
Karunanidhi D, Aravinthasamy P, Subramani T, et al. Risk of fluoride-rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain, south India[J]. Natural Resources Research, 2019, 29(4):2369-2395.
doi: 10.1007/s11053-019-09592-4 |
[25] | US EPA. Exposure factors handbook[R]. Washington: Office of Solid Waste and Emergency Response, 1997. |
[26] | US EPA. Risk assessment guidance for superfund, Volume I, Part C: Risk evaluation of remedial alternatives[R]. Washington: Office of Emergency and Remedial Response, 1991. |
[27] | US EPA. Superfund public health evaluation manual[R]. Washington: Office of Solid Waste and Emergency Response, 1986. |
[28] | World Health Organization. Fluoride in drinking water: Background document for development of WHO guidelines for drinking water quality[R]. Washington DC: WHO, 2004. |
[29] | 丁昊天, 袁兴中, 曾光明, 等. 基于模糊化的长株潭地区地下水重金属健康风险评价[J]. 环境科学研究, 2009, 22(11):1323-1328. |
[ Ding Haotian, Yuan Xingzhong, Zeng Guangming, et al. Health risk assessment from heavy metals in groundwater of Changsha-Zhuzhou-Xiangtan District based on fuzzy theory[J]. Research of Environmental Sciences, 2009, 22(11):1323-1328. ] | |
[30] |
Li P, Qian H, Wu J. Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, north-west China[J]. International Journal of Water Resources Development, 2018, 34(3):337-353.
doi: 10.1080/07900627.2018.1443059 |
[31] |
Dehbandi R, Moore F, Keshavarzi B, et al. Fluoride hydrogeochemistry and bioavailability in groundwater and soil of an endemic fluorosis belt, central Iran[J]. Environmental Earth Sciences, 2017, 76(4):177-192.
doi: 10.1007/s12665-017-6489-9 |
[32] |
Mondal D, Gupta S. Fluoride hydrogeochemistry in alluvial aquifer: An implication to chemical weathering and ion-exchange phenomena[J]. Environmental Earth Sciences, 2015, 73(7):3537-3554.
doi: 10.1007/s12665-014-3639-1 |
[33] |
Zhang Q, Xu P, Qian H, et al. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District, Central China: Assessment based on multivariate statistical approach and human health risk[J]. Science of the Total Environment, 2020, 741:140460.
doi: 10.1016/j.scitotenv.2020.140460 |
[34] |
Hossain M, Patra P K. Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types[J]. Environmental Pollution, 2020, 258:113646.
doi: 10.1016/j.envpol.2019.113646 |
[35] |
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170:1088-1090.
pmid: 17777828 |
[36] |
Li C, Gao X, Wang Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China[J]. Science of the Total Environment, 2015, 508:155-165.
doi: 10.1016/j.scitotenv.2014.11.045 |
[37] |
Dong S, Liu B, Shi X, et al. The spatial distribution and hydrogeological controls of fluoride in the confined and unconfined groundwater of Tuoketuo County, Hohhot, Inner Mongolia, China[J]. Environmental Earth Sciences, 2015, 74(1):325-335.
doi: 10.1007/s12665-015-4037-z |
[38] |
Jabal M S A, Abustan I, Rozaimy M R, et al. Fluoride enrichment in groundwater of semi-arid urban area: Khan Younis City, southern Gaza Strip (Palestine)[J]. Journal of African Earth Sciences, 2014, 100:259-266.
doi: 10.1016/j.jafrearsci.2014.07.002 |
[39] |
Brindha K, Jagadeshan G, Kalpana L, et al. Fluoride in weathered rock aquifers of southern India: Managed aquifer recharge for mitigation[J]. Environmental Science and Pollution Research, 2016, 23(9):8302-8316.
doi: 10.1007/s11356-016-6069-7 |
[40] |
Li P, Wu J, Qian H. Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China[J]. Environmental Earth Sciences, 2013, 69(7):2211-2225.
doi: 10.1007/s12665-012-2049-5 |
[41] |
Li X, Wu P, Han Z, et al. Sources, distributions of fluoride in waters and its influencing factors from an endemic fluorosis region in central Guizhou, China[J]. Environmental Earth Sciences, 2016, 75(11):981-995.
doi: 10.1007/s12665-016-5779-y |
[42] |
Reddy A G S, Reddy D V, Kumar M S. Hydrogeochemical processes of fluoride enrichment in Chimakurthy pluton, Prakasam District, Andhra Pradesh, India[J]. Environmental Earth Sciences, 2016, 75(8):663-680.
doi: 10.1007/s12665-016-5478-8 |
[43] | Schoeller H. Qualitative evaluation of groundwater resource[C]// Methods and Techniques of Groundwater Investigation and Development. Paris: UNESCO, 1965: 54-83. |
[1] | ZHAO Wei, MAJin-zhu, HE Jian-hua. Groundwater recharge and geochemical evolution in the Dunhuang Basin of Danghe River,northwest China [J]. , 2015, 38(6): 1133-1141. |
|