Arid Land Geography ›› 2023, Vol. 46 ›› Issue (5): 730-741.doi: 10.12118/j.issn.1000-6060.2022.405
• Climatology and Hydrology • Previous Articles Next Articles
YANG Yifei1,2(),YANG Pengnian1,2(
),WANG Changshu3,KOU Xin4,TAN Fan1,2,XU Jie1,2,WANG Cui1,2
Received:
2022-08-19
Revised:
2022-10-11
Online:
2023-05-25
Published:
2023-06-05
YANG Yifei, YANG Pengnian, WANG Changshu, KOU Xin, TAN Fan, XU Jie, WANG Cui. Effectiveness evaluation of water consumption in agricultural land of Yanqi Basin, Xinjiang[J].Arid Land Geography, 2023, 46(5): 730-741.
Tab. 1
Main data types and sources"
数据名称 | 时间 分辨率 | 空间 分辨率 | 数据来源 | 数据类型 |
---|---|---|---|---|
MODIS数据 | 逐日 | 250 m | 美国国家航空航天局(NASA) | MOD09GA、MOD09GQ和MOD11A1 |
DEM数据 | - | 30 m | 中国科学院地理空间数据云 | GDEMV2数字高程数据 |
气象资料 | 逐日 | 站点 | 中国气象科学数据中心中国地面气候资料数据集 | 焉耆县气象站气温、风速、湿度、降水量和蒸发量等数据 |
土地利用数据 | 逐年 | 30 m | 中国科学院地理科学与资源研究所 | 一级分类数据 |
引水量数据 | 逐年 | - | 塔里木河流域巴音郭楞蒙古自治州管理局 | 区域引水量、出流量等数据 |
Tab. 3
Statistical results of water consumption effectiveness evaluation of agricultural land in the Yanqi Basin from 2013 to 2020 /108 m3"
年份 | 高效耗水 | 中效耗水 | 低效耗水 | 总量 |
---|---|---|---|---|
2013 | 11.35 | 0.74 | 1.98 | 14.07 |
2014 | 9.98 | 0.72 | 2.10 | 12.81 |
2015 | 10.99 | 0.75 | 1.77 | 13.51 |
2016 | 11.47 | 0.79 | 1.67 | 13.93 |
2017 | 11.27 | 0.73 | 1.42 | 13.42 |
2018 | 11.54 | 0.86 | 1.92 | 14.32 |
2019 | 11.89 | 0.89 | 1.78 | 14.56 |
2020 | 11.64 | 0.69 | 1.66 | 13.98 |
平均 | 11.27 | 0.77 | 1.79 | 13.82 |
[1] | 周彦昭, 周剑, 李妍, 等. 利用SEBAL和改进的SEBAL模型估算黑河中游戈壁、绿洲的蒸散发[J]. 冰川冻土, 2014, 36(6): 1526-1537. |
[Zhou Yanzhao, Zhou Jian, Li Yan, et al. Simulating the evapotranspiration with SEBAL and modified SEBAL (M-SEBAL) models over the desert and oasis of the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1526-1537. ] | |
[2] | 涂晨雨, 贾绍凤, 朱文彬, 等. 柴达木盆地蒸散发遥感估算与耗水有效性评价研究[J]. 生态学报, 2022, 42(13): 5404-5415. |
[Tu Chenyu, Jia Shaofeng, Zhu Wenbin, et al. Remote sensing estimation of evapotranspiration and efficiency evaluation of water consumption in Qaidam Basin[J]. Acta Ecologica Sinica, 2022, 42(13): 5404-5415. ] | |
[3] | 李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358. |
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Research, 2021, 38(2): 351-358. ] | |
[4] | 王浩, 杨贵羽. 二元水循环条件下水资源管理理念的初步探索[J]. 自然杂志, 2010, 32(3): 130-133. |
[Wang Hao, Yang Guiyu. Preliminary study on new concept of water resources management under dualistic water cycle condition[J]. Chinese Journal of Nature, 2010, 32(3): 130-133. ] | |
[5] | 王浩, 杨贵羽, 贾仰文, 等. 基于区域ET结构的黄河流域土壤水资源消耗效用研究[J]. 中国科学(地球科学), 2007, 37(12): 1643-1652. |
[Wang Hao, Yang Guiyu, Jia Yangwen, et al. Research on soil water resources consumption utility in the Yellow River Basin based on regional ET structure[J]. Scientia Sinica (Terrae), 2007, 37(12): 1643-1652. ] | |
[6] | 吴炳方, 朱伟伟, 曾红伟, 等. 流域遥感: 内涵与挑战[J]. 水科学进展, 2020, 31(5): 654-673. |
[Wu Bingfang, Zhu Weiwei, Zeng Hongwei, et al. Watershed remote sensing: Definition and prospective[J]. Advances in Water Science, 2020, 31(5): 654-673. ] | |
[7] | 赵丽雯, 赵文智, 吉喜斌. 西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律[J]. 生态学报, 2015, 35(4): 1114-1123. |
[Zhao Liwen, Zhao Wenzhi, Ji Xibin. Division between transpiration and evaporation, and crop water consumption over farmland within oases of the middlestream of Heihe River Basin, northwestern China[J]. Acta Ecologica Sinica, 2015, 35(4): 1114-1123. ] | |
[8] | 李晗, 陈晗, 黄津辉, 等. 区域遥感双源蒸散发模型研究进展[J]. 水资源保护, 2022, 38(4): 87-94. |
[Li Han, Chen Han, Huang Jinhui, et al. Research progress on dual-source evapotranspiration models based on regional remote sensing[J]. Water Resources Protection, 2022, 38(4): 87-94. ] | |
[9] | 唐荣林, 王晟力, 姜亚珍, 等. 基于地表温度——植被指数三角/梯形特征空间的地表蒸散发遥感反演综述[J]. 遥感学报, 2021, 25(1): 65-82. |
[Tang Ronglin, Wang Shengli, Jiang Yazhen, et al. A review of retrieval of land surface evapotranspiration based on remotely sensed surface temperature versus vegetation index triangular/trapezoidal characteristic space[J]. National Remote Sensing Bulletin, 2021, 25(1): 65-82. ] | |
[10] | 尚松浩, 蒋磊, 杨雨亭. 基于遥感的农业用水效率评价方法研究进展[J]. 农业机械学报, 2015, 46(10): 81-92. |
[Shang Songhao, Jiang Lei, Yang Yuting. Research progress on evaluation methods of agricultural water use efficiency based on remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 81-92. ] | |
[11] | 杨雨亭, 尚松浩. 双源蒸散发模型估算潜在蒸散发量的对比[J]. 农业工程学报, 2012, 28(24): 85-91. |
[Yang Yuting, Shang Songhao. Comparison of dual-source evapotranspiration models in estimating potential evaporation and transpiration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 85-91. ] | |
[12] |
Sun S K, Li C, Wang Y B, et al. Evaluation of the mechanisms and performances of major satellite-based evapotranspiration models in northwest China[J]. Agricultural and Forest Meteorology, 2020, 291: 108056, doi: 10.1016/j.agrformet.2020.108056.
doi: 10.1016/j.agrformet.2020.108056 |
[13] |
Moletto-Lobos I, Mattar C, Barichivich J. Performance of satellite-based evapotranspiration models in temperate pastures of southern Chile[J]. Water, 2020, 12(12): 3587, doi: 10.3390/w12123587.
doi: 10.3390/w12123587 |
[14] |
Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model[J]. Journal of Irrigation and Drainage Engineering, 2007, 133(4): 380-394.
doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) |
[15] |
Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology, 1995, 77(3-4): 263-293.
doi: 10.1016/0168-1923(95)02265-Y |
[16] |
Sánchez J M, Kustas W P, Caselles V, et al. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations[J]. Remote Sensing of Environment, 2008, 112(3): 1130-1143.
doi: 10.1016/j.rse.2007.07.018 |
[17] |
Long D, Singh V P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment, 2012, 121: 370-388.
doi: 10.1016/j.rse.2012.02.015 |
[18] |
Yang Y, T, Shang Y S H. A hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM) using satellite images: Algorithm and model test[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2284-2300.
doi: 10.1002/jgrd.50259 |
[19] | 刘馨井雨, 韩旭东, 张晓春, 等. 基于SEBAL模型和环境卫星的区域蒸散发量及灌溉水利用系数估算研究[J]. 灌溉排水学报, 2021, 40(8): 136-144. |
[Liu Xinjingyu, Han Xudong, Zhang Xiaochun, et al. Using SEBAL model and HJ satellite data to calculate regional evapotranspiration and irrigation water use efficiency[J]. Journal of Irrigation and Drainage, 2021, 40(8): 136-144. ] | |
[20] | 宋佳. 开都-孔雀河流域天然植被蒸散发遥感反演及生态需水研究[D]. 乌鲁木齐: 新疆大学, 2019. |
[Song Jia. Remote sensing retrieval of natural vegetation evapotranspiration and ecological water requirement in Kaidu-Kongqi River Basin[D]. Urumqi: Xinjiang University, 2019. ] | |
[21] | 蒋磊, 尚松浩, 杨雨亭, 等. 基于遥感蒸散发的区域作物估产方法[J]. 农业工程学报, 2019, 35(14): 90-97. |
[Jiang Lei, Shang Songhao, Yang Yuting, et al. Method of regional crop yield estimation based on remote sensing evapotranspiration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 90-97. ] | |
[22] |
Yang Y T, Long D, Guan H, et al. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics[J]. Water Resources Research, 2015, 51(5): 3145-3165.
doi: 10.1002/2014WR015619 |
[23] | Yang Y T. Evapotranspiration over heterogeneous vegetated surfaces[M]. Berlin: Springer, 2015. |
[24] |
Yu B, Shang S H, Zhu W B, et al. Mapping daily evapotranspiration over a large irrigation district from MODIS data using a novel hybrid dual-source coupling model[J]. Agricultural and Forest Meteorology, 2019, 276: 107612, doi: 10.1016/j.agrformet.2019.06.011.
doi: 10.1016/j.agrformet.2019.06.011 |
[25] |
Yu B, Shang S H. Estimating growing season evapotranspiration and transpiration of major crops over a large irrigation district from HJ-1A/1B data using a remote sensing: Based dual source evapotranspiration model[J]. Remote Sensing, 2020, 12(5): 865, doi: 10.3390/rs12050865.
doi: 10.3390/rs12050865 |
[26] |
Xu T, Liu S, Xu L, et al. Temporal upscaling and reconstruction of thermal remotely sensed instantaneous evapotranspiration[J]. Remote Sensing, 2015, 7(3): 3400-3425.
doi: 10.3390/rs70303400 |
[27] | Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[M]. Rome: Food and Agriculture Organization (FAO), 1998. |
[28] |
Bastiaanssen W G M, Ahmad M D, Chemin Y. Satellite surveillance of evaporative depletion across the Indus Basin[J]. Water Resources Research, 2002, 38(12): 9-1-9-9, doi: 10.1029/2001WR000386.
doi: 10.1029/2001WR000386 |
[29] | 潘子豪, 杨胜天, 娄和震, 等. 缺测站干旱流域生态输水遥感监测与农业节水效益分析[J]. 干旱区地理, 2022, 45(3): 774-785. |
[Pan Zihao, Yang Shengtian, Lou Hezhen, et al. Remote sensing monitoring of ecological water conveyance and benefits evaluation of agricultural water-saving in arid basin without observation station[J]. Arid Land Geography, 2022, 45(3): 774-785. ] | |
[30] | 张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999. |
[Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. ] | |
[31] | 李旭亮, 杨礼箫, 胥学峰, 等. 基于SEBAL模型的西北农牧交错带生长季蒸散发估算及变化特征分析[J]. 生态学报, 2020, 40(7): 2175-2185. |
[Li Xuliang, Yang Lixiao, Xu Xuefeng, et al. Analysis of evapotranspiration pattern by SEBAL model during the growing season in the agro-pastoral ecotone in northwest China[J]. Acta Ecologica Sinica, 2020, 40(7): 2175-2185. ] | |
[32] | 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938. ] | |
[33] | 钟新才. 博斯腾湖水面蒸发量初步估算[J]. 干旱区地理, 1988, 11(4): 39-44. |
[Zhong Xincai. Primary evaluation of water surface evaporation in Bosten Lake[J]. Arid Land Geography, 1988, 11(4): 39-44. ] | |
[34] | 卢诗卉, 赵红莉, 蒋云钟, 等. 基于多源遥感数据和水量平衡原理的灌溉用水量分析[J]. 水利学报, 2021, 52(9): 1126-1135. |
[Lu Shihui, Zhao Hongli, Jiang Yunzhong, et al. Analysis of irrigation water based on multi-source remote sensing data and water balance principle[J]. Journal of Hydraulic Engineering, 2021, 52(9): 1126-1135. ] | |
[35] | 李晴. 基于遥感蒸散量的焉耆盆地农田水量平衡方程建立及应用[D]. 乌鲁木齐: 新疆农业大学, 2021. |
[Li Qing. Establishment and application of farmland water balance equation based on remote sensing evapotranspiration in Yanqi Basin[D]. Urumqi: Xinjiang Agricultural University, 2021. ] | |
[36] | 余欣, 杨汉波, 吕华芳, 等. 基于广义蒸发互补理论的塔里木河流域绿洲实际蒸散发变化及其归因分析[J]. 水利水电技术, 2020, 51(6): 1-9. |
[Yu Xin, Yang Hanbo, Lü Huafang, et al. Generalized evapotranspiration-complementarity theory-based analysis on variation of actual evapotranspiration in oases of Tarim River Basin and its attribution[J]. Water Resources and Hydropower Engineering, 2020, 51(6): 1-9. ] | |
[37] | 张瀚, 杨鹏年, 汪昌树, 等. 干旱区不同冬灌定额对土壤水盐分布的影响研究[J]. 灌溉排水学报, 2016, 35(11): 42-46. |
[Zhang Han, Yang Pengnian, Wang Changshu, et al. Effect of winter irrigation amount on soil moisture and salt distribution in arid area[J]. Journal of Irrigation and Drainage, 2016, 35(11): 42-46. ] | |
[38] | 刘函如, 冯进平, 刘洪光. 周期性冬灌对新疆膜下滴灌棉田盐分和经济效益的影响[J]. 干旱区资源与环境, 2022, 36(6): 194-201. |
[Liu Hanru, Feng Jinping, Liu Hongguang. Effect of periodic winter irrigation on salinity and economic benefit of cotton field under mulched drip irrigation in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 194-201. ] | |
[39] | 杨强军, 范燕敏, 耿庆龙, 等. 焉耆盆地耕地土壤盐分时空变化特征研究[J]. 新疆农业大学学报, 2020, 43(5): 385-390. |
[Yang Qiangjun, Fan Yanmin, Geng Qinglong, et al. Temporal and spatial variation characteristics of soil salinity in cultivated land of Yanqi Basin[J]. Journal of Xinjiang Agricultural University, 2020, 43(5): 385-390. ] |
[1] | LI Hongyang, CHEN Tianyu, WANG Shengjie, ZHANG Mingjun. Spatiotemporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021 [J]. Arid Land Geography, 2024, 47(9): 1443-1450. |
[2] | LIU Yu, MEI Hua, FAN Wenbo, REN Congzhe, WANG Shiwei, LI Shunshun. Temporal and spatial characteristics of drought in the Ta’e Basin from 1992 to 2022 based on the SPEI index [J]. Arid Land Geography, 2024, 47(8): 1338-1347. |
[3] | ZHANG Xuhui, Yusufujiang RUSULI, QIU Zhongli, Yaxiaer AISIKEER, Abudureheman WUSIMAN. Remote sensing identification and assessment of crops in the Yanqi Basin, Xinjiang, China based on Sentinel-2 time series data [J]. Arid Land Geography, 2024, 47(4): 672-683. |
[4] | MA Yali, NIU Zuirong, SUN Dongyuan. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in the Hexi Corridor [J]. Arid Land Geography, 2024, 47(2): 192-202. |
[5] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[6] | WEI Tao, WANG Yunquan. Temporal and spatial dynamic analysis of terrestrial evapotranspiration in China based on PML-V2 product [J]. Arid Land Geography, 2023, 46(6): 857-867. |
[7] | CAO Yujuan, SI Wenyang, DU Ziqiang, LIANG Hanxue, LEI Tianjie, SUN Bin, WU Zhitao. Changes in GPP of China during the typical drought years from 1982 to 2017 [J]. Arid Land Geography, 2023, 46(10): 1577-1590. |
[8] | HE Xugang, Mamat SAWUT, SHENG Yanfang, LI Rongpeng. Remote sensing estimation of cotton water productivity in Ugan-Kuqa River Oasis based on Google Earth Engine [J]. Arid Land Geography, 2023, 46(10): 1632-1642. |
[9] | MEI Jing, SUN Meiping, LI Lin. Variations of evapotranspiration and its components in alpine meadow on the Tibetan Plateau based on SWH model [J]. Arid Land Geography, 2022, 45(6): 1740-1751. |
[10] | FU Yinghao, SHEN Xiaojing, LI Wangcheng, WU Xu, ZHANG Qingqing. Applicability of reference crop evapotranspiration calculation based on Hargreaves-Samani regression correction [J]. Arid Land Geography, 2022, 45(6): 1752-1760. |
[11] | HAN Rucun,ZHANG Ying,LI Zhanling. Effects of two uncertainty sources on drought index of SPEI and on drought assessment [J]. Arid Land Geography, 2022, 45(5): 1392-1401. |
[12] | HAN Dianchen,ZHANG Fangmin,CHEN Jiquan,LI Yunpeng,LU Qi,LU Yanyu. Evapotranspiration of a semi-arid landscape in Inner Mongolia: Estimation and attribution [J]. Arid Land Geography, 2022, 45(4): 1071-1081. |
[13] | SHI Jiqing,BIAN Duo,YANG Feiyun,GAN Chenlong,FAN Dongliang. Variation characteristics of potential evapotranspiration and the forecast of grey model in Tibet [J]. Arid Land Geography, 2021, 44(6): 1570-1579. |
[14] | GU Jiahe,XUE Huazhu,DONG Guotao,ZHOU Lijuan,LI Jingru,DANG Suzhen,LI Shangzhi. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin [J]. Arid Land Geography, 2021, 44(1): 158-167. |
[15] | NING Ya-zhou, ZHANG Fu-ping, FENG Qi, WEI Yong-fen, LI Ling, LIU Jie-yao, ZENG Pan-ru. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency [J]. Arid Land Geography, 2020, 43(4): 928-938. |
|