Arid Land Geography ›› 2022, Vol. 45 ›› Issue (5): 1523-1533.doi: 10.12118/j.issn.1000-6060.2021.017
• Biology and Pedology • Previous Articles Next Articles
HE Junqi(),WEI Yan,GAO Wande,CHEN Yunfei,MA Yandong,LIU Xiuhua()
Received:
2022-01-10
Revised:
2022-03-12
Online:
2022-09-25
Published:
2022-10-20
Contact:
Xiuhua LIU
E-mail:516588675@qq.com;liuxh68@chd.edu.cn
HE Junqi,WEI Yan,GAO Wande,CHEN Yunfei,MA Yandong,LIU Xiuhua. Temporal and spatial variation of vegetation NDVI and its response to climatic factors in the southeastern margin of Mu Us Sandy Land[J].Arid Land Geography, 2022, 45(5): 1523-1533.
Tab. 2
Area proportion of different vegetation types and their change trends of NDVI during the growing season from 1990 to 2018"
植被类型 | 像元数 | 占比/% | 变化率/a-1 | 决定系数(R2) | P值 |
---|---|---|---|---|---|
栽培植被 | 14465 | 48.3 | 0.010 | 0.864 | <0.01 |
草原 | 14274 | 47.7 | 0.008 | 0.903 | <0.01 |
灌丛 | 678 | 2.3 | 0.014 | 0.840 | <0.01 |
草甸 | 407 | 1.3 | 0.009 | 0.896 | <0.01 |
阔叶林 | 45 | 0.1 | 0.006 | 0.886 | <0.01 |
草丛 | 37 | 0.1 | 0.011 | 0.842 | <0.01 |
荒漠 | 37 | 0.1 | 0.009 | 0.790 | <0.01 |
沼泽 | 20 | 0.0 | 0.007 | 0.840 | <0.01 |
Tab. 3
Partial correlation coefficients between annual NDVI and annual extreme daily mean temperature, annual minimum daily mean temperature and total precipitation during the growing season of different vegetation types"
植被类型 | 年均高温 | 年均低温 | 年总降水量 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1990— 2018年 | 1990— 2005年 | 2006— 2018年 | 1990— 2018年 | 1990— 2005年 | 2006— 2018年 | 1990— 2018年 | 1990— 2005年 | 2006— 2018年 | ||||
NDVI | 栽培植被 | -0.33 | -0.33 | -0.36 | 0.66** | 0.51* | 0.52 | 0.53** | 0.02 | 0.92** | ||
草原 | -0.38* | -0.42 | -0.18 | 0.68** | 0.58* | 0.35 | 0.50** | -0.07 | 0.88** | |||
草甸 | 0.01 | 0.11 | -0.17 | 0.55** | 0.38 | 0.14 | 0.56** | 0.31 | 0.81** | |||
灌丛 | -0.49** | -0.54* | -0.31 | 0.67** | 0.53* | 0.44 | 0.54** | -0.06 | 0.91** |
Tab. 4
q value of single factor influence"
植被类型 | 影响因子 | q值 | P值 |
---|---|---|---|
栽培植被 | 年均高温/℃ | 0.287 | 0.341 |
年均低温/℃ | 0.548 | 0.003** | |
年总降水量/mm | 0.541 | 0.023* | |
草原 | 年均高温/℃ | 0.354 | 0.396 |
年均低温/℃ | 0.535 | 0.062 | |
年总降水量/mm | 0.727 | 0.000** | |
草甸 | 年均高温/℃ | 0.390 | 0.310 |
年均低温/℃ | 0.713 | 0.000** | |
年总降水量/mm | 0.399 | 0.599 | |
灌丛 | 年均高温/℃ | 0.237 | 0.537 |
年均低温/℃ | 0.501 | 0.007** | |
年总降水量/mm | 0.622 | 0.049* |
[1] |
李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4): 1180-1194.
doi: 10.11821/dlyj020200328 |
[Li Ming, Sun Hongquan, Su Zhicheng. Research progress in dry/wet climate variation in northwest China[J]. Geographical Research, 2021, 40(4): 1180-1194. ]
doi: 10.11821/dlyj020200328 |
|
[2] | 赵志平, 邵全琴, 黄麟. 2008年南方特大冰雪冻害对森林损毁的NDVI响应分析——以江西省中部山区林地为例[J]. 地球信息科学, 2009, 11(4): 20-29. |
[Zhao Zhiping, Shao Quanqin, Huang Lin. NDVI response of forest damage to extreme snow and ice damage in southern China in 2008: A case study of mountainous forest in central Jiangxi Province[J]. Journal of Geo-information Science, 2009, 11(4): 20-29. ] | |
[3] | 孙睿, 刘昌明, 朱启疆. 黄河流域植被覆盖度动态变化与降水的关系[J]. 地理学报, 2001, 56(6): 667-672. |
[Sun Rui, Liu Changming, Zhu Qijiang. Relationship between vegetation coverage and precipitation in the Yellow River Basin[J]. Acta Geographica Sinica, 2001, 56(6): 667-672. ] | |
[4] | 岳健, 穆桂金, 唐自华, 等. 基于NDVI的新疆荒漠地区植被覆盖度遥感估算经验模型研究[J]. 干旱区地理, 2020, 43(1): 153-160. |
[Yue Jian, Mu Guijin, Tang Zihua, et al. Remote sensing estimation models for vegetation coverage in desert regions of Xinjiang based on NDVI[J]. Arid Land Geography, 2020, 43(1): 153-160. ] | |
[5] |
Horion S, Cornet Y, Erpicum M. Studying interactions between climate variability and vegetation dynamic using a phenology based approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20: 20-32.
doi: 10.1016/j.jag.2011.12.010 |
[6] |
Gao Z Q, Dennis O. The temporaland spatial relationship between NDVI and climatological parameters in Colorado[J]. Journal of Geographical Sciences, 2001, 11(4): 411-419.
doi: 10.1007/BF02837968 |
[7] | 李晴晴, 曹艳萍, 苗书玲. 黄河流域植被时空变化及其对气候要素的响应研究[J]. 生态学报. [2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220110.1104.032.html. |
[Li Qingqing, Cao Yanping, Miao Shuling. Spatio-temporal variation in vegetation coverageand its response to climate factors in the Yellow River Basin, China[J]. Acta Ecologica Sinica.[2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220110.1104.032.html. ] | |
[8] | 冯颖. 毛乌素沙地植被盖度变化及其对气候变化的响应[D]. 北京: 北京林业大学, 2015. |
[Feng Ying. Vegetation coverage change in Mu Us Sandy Land and its response to climate change[D]. Beijing: Beijing Forestry University, 2015. ] | |
[9] | 马赟花, 张铜会, 刘新平, 等. 极端降水事件对科尔沁沙地一年生植被的影响[J]. 中国沙漠, 2016, 36(1): 50-56. |
[Ma Yunhua, Zhang Tonghui, Liu Xinping, et al. Effect of extreme precipitation event on annuals in the Horqin Sandy Land[J]. Journal of Desert Research, 2016, 36(1): 50-56. ] | |
[10] | 高滢, 孙虎, 徐崟尧, 等. 陕西省植被覆盖时空变化及其对极端气候的响应[J]. 生态学报, 2022, 42(3): 1022-1033. |
[Gao Ying, Sun Hu, Xu Yinyao, et al. Temporal and spatial variation of vegetation cover and its response to extreme climate in Shaanxi Province[J]. Acta Ecologica Sinica, 2022, 42(3): 1022-1033. ] | |
[11] | 刘静, 温仲明, 刚成诚. 黄土高原不同植被覆被类型NDVI对气候变化的响应[J]. 生态学报, 2020, 40(2): 678-691. |
[Liu Jing, Wen Zhongming, Gang Chengcheng. Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(2): 678-691. ] | |
[12] | 解晗, 同小娟, 李俊, 等. 2000—2018年黄河流域生长季NDVI、EVI变化及其对气候因子的响应[J]. 生态学报.[2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220209.1510.010.html. |
[Xie Han, Tong Xiaojuan, Li Jun, et al. Changes of NDVI and EVI and their responses to climatic variables in the Yellow River Basin during the growing season of 2000 —2018[J]. Acta Ecologica Sinica, [2022-01-10]. http://kns.cnki.net/kcms/detail/11.2031.Q.20220209.1510.010.html. ] | |
[13] | 中国科学院中国植被图编辑委员会. 1:1000000 中国植被图集[M]. 北京: 科学出版社, 2001. |
[Editorial Committee of Vegetationatlas of China, Chinese Academy of Sciences. 1:1000000 vegetation atlas of China[M]. Beijing: Science Press, 2001. ] | |
[14] | 张轩, 张行南, 江唯佳, 等. 秦淮河流域东山站水位预报研究[J]. 水资源保护, 2020, 36(2): 41-46. |
[Zhang Xuan, Zhang Xingnan, Jiang Weijia, et al. Study on water level forecast of Dongshan Station in Qinhuai River Basin[J]. Water Resources Protection, 2020, 36(2): 41-46. ] | |
[15] | 申雨晨, 李双双, 延军平, 等. 极点对称模态分解下陕西气候变化特征及影响因素[J]. 干旱区地理, 2021, 44(1): 36-46. |
[Shen Yuchen, Li Shuangshuang, Yan Junping, et al. Spatiotemporal climate variation and its influencing factors in Shaanxi Province based on extreme-point symmetric mode decompositior[J]. Arid Land Geography, 2021, 44(1): 36-46. ] | |
[16] |
Wang J L, Li Z J. The ESMD method for climate data analysis[J]. Climate Change Research Letters, 2014, 3(1): 1-5.
doi: 10.12677/CCRL.2014.31001 |
[17] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
doi: 10.1080/13658810802443457 |
[18] | Song Y Z, Wang J F, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data[J]. Giscience & Remote Sensing, 2020, 57(5): 593-610. |
[19] | 张若婧, 陈跃红, 张晓祥, 等. 基于参数最优地理探测器的江西省山洪灾害时空格局与驱动力研究[J]. 地理与地理信息科学, 2021, 37(4): 72-80. |
[Zhang Ruojing, Chen Yuehong, Zhang Xiaoxiang, et al. Spatial-temporal pattern and driving factors of flash flood disasters in Jiangxi Province analyzed by optimal parameters-based geographical detector[J]. Geographyand Geo-information Science, 2021, 37(4): 72-80. ] | |
[20] | 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8): 2530-2540. |
[Zhang Hua, Li Ming, Song Jinyue, et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detecton[J]. Chinese Journal of Ecology, 2021, 40(8): 2530-2540. ] | |
[21] |
Xiu L N, Yan C Z, Li X S, et al. Monitoring the response of vegetation dynamics to ecological engineering in the Mu Us Sandy Land of China from 1982 to 2014[J]. Environmental Monitoring and Assessment, 2018, 190: 543, doi: 10.1007/s1066101869319.
doi: 10.1007/s10661-018-6931-9 pmid: 30136179 |
[22] |
Heisler-White J L, Blair J M, Kelly E F, et al. Contingenet productivity responses to more extreme rainfall regimes acrossa grassland biome[J]. Global Change Biology, 2009, 15(12): 2894-2904.
doi: 10.1111/j.1365-2486.2009.01961.x |
[23] | Dietrich C C, Kreyling J, Jentscha A, et al. Intraspecific variation in response to magnitude and frequency of freeze-thaw cycles ina temperate grass[J]. AoB Plants, 2017, 10(1): 160-168. |
[24] |
Connolly B M, Orrock J L. Climatic variation and seed persistence: Freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens[J]. Oecologia, 2015, 179(2): 609-616.
doi: 10.1007/s00442-015-3369-4 pmid: 26078006 |
[25] | Skinner D, Bellinger B S. Freezing tolerance of winter wheatas influenced by extended grow that low temperature sand exposure to freeze-thaw cycles[J]. Canadian Journal of Plant Science, 2017, 97(2): 250-256. |
[26] | 高国雄. 毛乌素沙地东南缘人工植被结构与生态功能研究[D]. 北京: 北京林业大学, 2007. |
[Gao Guoxiong. Study on the structure and ecological function of artificial vegetation in southeastern margin of Mu Us Sandy Land[D]. Beijing: Beijing Forestry University, 2007. ] |
|