Arid Land Geography ›› 2023, Vol. 46 ›› Issue (2): 274-283.doi: 10.12118/j.issn.1000-6060.2022.126
• Land Use and Carbon Emissions • Previous Articles Next Articles
Received:
2022-03-30
Revised:
2022-05-09
Online:
2023-02-25
Published:
2023-03-14
WU Xi, CHEN Qiangqiang. Influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province[J].Arid Land Geography, 2023, 46(2): 274-283.
Tab. 1
Carbon emissions of industries in Gansu Province /Mt"
行业 | 2010年 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
---|---|---|---|---|---|---|---|---|---|---|
农业 | 2.20 | 2.28 | 2.33 | 2.50 | 2.14 | 2.17 | 2.42 | 2.44 | 2.22 | 1.99 |
采掘业 | 2.74 | 5.17 | 7.01 | 9.36 | 10.39 | 10.33 | 11.02 | 11.66 | 9.54 | 7.41 |
轻工制造业 | 1.80 | 1.74 | 1.84 | 3.04 | 4.31 | 1.89 | 3.64 | 2.63 | 1.62 | 0.61 |
纺织制造业 | 0.05 | 0.07 | 0.09 | 0.08 | 0.05 | 0.04 | 0.04 | 0.02 | 0.02 | 0.01 |
石油制造业 | 45.64 | 52.21 | 49.54 | 52.78 | 49.43 | 48.91 | 46.24 | 49.22 | 50.96 | 52.69 |
化工制造业 | 14.88 | 15.71 | 19.04 | 20.03 | 20.00 | 20.36 | 18.84 | 18.05 | 17.34 | 16.63 |
钢铁制造业 | 32.50 | 36.47 | 38.12 | 38.66 | 39.28 | 43.01 | 37.74 | 38.64 | 36.65 | 34.67 |
机电制造业 | 0.62 | 0.64 | 0.48 | 0.35 | 0.24 | 0.19 | 0.18 | 0.07 | 0.05 | 0.03 |
电力行业 | 55.73 | 68.83 | 68.69 | 69.75 | 67.16 | 58.74 | 56.19 | 55.44 | 65.93 | 76.42 |
建筑业 | 1.20 | 1.20 | 1.31 | 1.45 | 1.10 | 1.14 | 1.28 | 1.25 | 1.19 | 1.13 |
运输业 | 6.17 | 6.57 | 7.39 | 7.78 | 10.17 | 9.42 | 9.13 | 9.24 | 8.82 | 8.39 |
贸易餐饮业 | 0.90 | 0.83 | 0.84 | 0.96 | 0.79 | 0.92 | 1.18 | 1.17 | 1.14 | 1.11 |
其他服务业 | 0.78 | 0.80 | 0.82 | 0.99 | 2.03 | 2.44 | 2.81 | 2.79 | 2.68 | 2.56 |
Tab. 2
Relative contribution of influencing factors of industry carbon emissions in Gansu Province"
年份 | 效应 | 农业 | 采掘业 | 轻工 制造业 | 纺织 制造业 | 石油制造业 | 化工制造业 | 钢铁制造业 | 机电制造业 | 电力 行业 | 建筑业 | 运输业 | 贸易 餐饮业 | 其他 服务业 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010—2013 | ΔCP | 1.6* | 0.7* | 1.5* | 0.8* | 1.6* | 1.1* | 1.5* | 0.7* | 1.6* | 1.8* | 2.0* | 1.4* | 1.6* |
ΔCGP | 59.5*** | 25.9** | 57.4*** | 30.3** | 60.3*** | 41.3** | 57.3** | 26.3** | 58.3*** | 67.9*** | 74.8*** | 53.8*** | 59.4*** | |
ΔCSI | -28.5** | 16.1* | 37.5** | 34.6** | -24.9* | 26.6** | 5.9* | -3.7* | 10.4* | -15.6* | -0.3* | -34.9** | 10.9* | |
ΔCEI | -9.8* | 52.6*** | -3.3* | -34.1** | -11.6* | -30.5** | -34.7** | -67.7*** | -29.8** | -14.7* | -21.2* | -5.5* | -25.9** | |
ΔCES | 0.6* | 4.8* | 0.3* | 0.2* | 1.6* | -0.5* | 0.6* | -1.6* | 0.0* | (0.0)* | -1.7* | -4.3* | -2.3* | |
ΔC | 0.30 | 6.62 | 1.24 | 0.02 | 7.14 | 5.15 | 6.15 | -0.27 | 14.02 | 0.25 | 1.61 | 0.06 | 0.21 | |
2013—2016 | ΔCP | 2.3* | 3.6* | 1.3* | 1.0* | 1.6* | 1.2* | 2.3* | 1.0* | 1.6* | 1.9* | 2.7* | 1.4* | 0.9* |
ΔCGP | 44.6** | 70.0*** | 25.7** | 19.1* | 31.6** | 23.8* | 45.1** | 18.7* | 30.9** | 37.3** | 54.0*** | 27.8** | 17.9* | |
ΔCSI | -12.8* | -4.6* | 33.5** | -3.0* | -60.0*** | 20.7* | -0.4* | -5.4* | 1.5* | -7.8* | -26.2** | -28.7** | 9.3* | |
ΔCEI | -36.2** | -18.1* | -38.9** | -73.5*** | 6.3* | -53.5*** | -49.1** | -74.8*** | -65.9*** | -44.2** | 13.9* | 34.6** | 68.3*** | |
ΔCES | -4.2* | 3.8* | 0.7* | -3.4* | 0.5* | 0.8* | -3.1* | -0.2* | 0.0* | -8.7* | -3.2* | -7.5* | -3.5* | |
ΔC | -0.07 | 1.66 | 0.61 | -0.04 | -6.54 | -1.19 | -0.91 | -0.17 | -13.56 | -0.16 | 1.35 | 0.22 | 1.83 | |
2016—2019 | ΔCP | 2.9* | 2.0* | 0.7* | 0.8* | 1.8* | 3.4* | 3.5* | 0.4* | 2.0* | 3.4* | 3.3* | 2.6* | 2.6* |
ΔCGP | 26.4** | 19.0* | 6.3* | 7.6* | 16.9* | 31.5** | 32.3** | 3.7* | 19.0* | 31.2** | 30.4** | 24.1* | 24.1* | |
ΔCSI | 1.0* | -57.1*** | -21.6* | -62.0*** | 38.5** | -52.0*** | 2.1* | -6.4* | 51.1*** | -31.7** | 6.5* | 18.2* | 14.5* | |
ΔCEI | -66.1*** | -21.4* | -70.2*** | -19.3* | -41.6** | -9.8* | -60.4*** | -42.5** | -27.9** | -32.0** | -56.0*** | -48.9** | -54.3*** | |
ΔCES | -3.6* | 0.5* | -1.2* | -10.2* | 1.2* | -3.3* | 1.7* | -47.0** | 0.0* | -1.8* | -3.8* | -6.2* | -4.4* | |
ΔC | -0.43 | -3.61 | -3.03 | -0.03 | 6.45 | -2.21 | -3.08 | -0.15 | 20.23 | -0.16 | -0.74 | -0.06 | -0.26 |
Tab. 3
Decoupling situation of industry carbon emissions in Gansu Province"
行业 | 2010—2013年 | 2013—2016年 | 2016—2019年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ε | 脱钩状态 | ε | 脱钩状态 | ε | 脱钩状态 | |||||
农业 | 0.70 | 弱脱钩 | -0.17 | 强脱钩 | -1.09 | 强脱钩 | ||||
采掘业 | 3.43 | 扩张负脱钩 | 0.77 | 弱脱钩 | 1.48 | 衰退脱钩 | ||||
轻工制造业 | 0.95 | 扩张连接 | 0.31 | 弱脱钩 | 3.15 | 衰退脱钩 | ||||
纺织制造业 | 0.40 | 弱脱钩 | -2.32 | 强脱钩 | 1.24 | 衰退脱钩 | ||||
石油制造业 | 0.71 | 弱脱钩 | 0.76 | 弱负脱钩 | 0.25 | 弱脱钩 | ||||
化工制造业 | 0.48 | 弱脱钩 | -0.12 | 强脱钩 | 1.71 | 衰退脱钩 | ||||
钢铁制造业 | 0.43 | 弱脱钩 | -0.10 | 强脱钩 | -0.49 | 强脱钩 | ||||
机电制造业 | -1.31 | 强脱钩 | -2.88 | 强脱钩 | 10.52 | 衰退脱钩 | ||||
电力行业 | 0.53 | 弱脱钩 | -0.75 | 强脱钩 | 0.55 | 弱脱钩 | ||||
建筑业 | 0.70 | 弱脱钩 | -0.59 | 强脱钩 | -9.98 | 强脱钩 | ||||
运输业 | 0.66 | 弱脱钩 | 1.37 | 扩张负脱钩 | -0.42 | 强脱钩 | ||||
贸易餐饮业 | 0.50 | 弱脱钩 | 59.43 | 扩张负脱钩 | -0.19 | 强脱钩 | ||||
其他服务业 | 0.56 | 弱脱钩 | 4.72 | 扩张负脱钩 | -0.36 | 强脱钩 |
Tab. 4
Decoupling effort of influencing factors of industry carbon emissions in Gansu Province"
效应 | 2010—2013年 | 2013—2016年 | 2016—2019年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DP | DSI | DEI | DES | DP | DSI | DEI | DES | DP | DSI | DEI | DES | |||
农业 | -0.03 | 0.48* | 0.16* | -0.01 | -0.05 | 0.29* | 0.81* | 0.09* | -0.11 | -0.04 | 2.50** | 0.13* | ||
采掘业 | -0.03 | -0.62 | -2.03 | -0.18 | -0.05 | 0.07* | 0.26* | -0.05 | -0.11 | 3.01* | 1.13** | -0.03 | ||
轻工制造业 | -0.03 | -0.65 | 0.06* | -0.01 | -0.05 | -1.31 | 1.51** | -0.03 | -0.11 | 3.44* | 11.15** | 0.19* | ||
纺织制造业 | -0.03 | -1.14 | 1.12** | -0.01 | -0.05 | 0.16* | 3.84** | 0.18* | -0.11 | 8.17* | 2.54** | 1.35** | ||
石油制造业 | -0.03 | 0.41* | 0.19* | -0.03 | -0.05 | 1.90** | -0.20 | -0.02 | -0.11 | -2.28 | 2.47** | -0.07 | ||
化工制造业 | -0.03 | -0.64 | 0.74* | 0.01* | -0.05 | -0.87 | 2.25** | -0.03 | -0.11 | 1.65* | 0.31* | 0.10 | ||
钢铁制造业 | -0.03 | -0.10 | 0.60* | -0.01 | -0.05 | 0.01* | 1.09** | 0.07* | -0.11 | -0.06 | 1.87** | -0.05 | ||
机电制造业 | -0.03 | 0.14* | 2.58** | 0.06* | -0.05 | 0.29* | 3.99** | 0.01* | -0.11 | 1.75* | 11.58** | 12.81** | ||
电力行业 | -0.03 | -0.18 | 0.51* | 0.00 | -0.05 | -0.05 | 2.13** | 0.00 | -0.11 | -2.69 | 1.47** | 0.00 | ||
建筑业 | -0.03 | 0.23* | 0.22* | 0.00* | -0.05 | 0.21* | 1.19** | 0.23* | -0.11 | 1.02* | 1.03** | 0.06* | ||
运输业 | -0.03 | 0.00* | 0.28* | 0.02* | -0.05 | 0.49* | -0.26 | 0.06* | -0.11 | -0.21 | 1.84** | 0.12* | ||
贸易餐饮业 | -0.03 | 0.65* | 0.10* | 0.08* | -0.05 | 1.03* | -1.25 | 0.27* | -0.11 | -0.75 | 2.03** | 0.26* | ||
其他服务业 | -0.03 | -0.18 | 0.44* | 0.04* | -0.05 | -0.52 | -3.82 | 0.20* | -0.11 | -0.60 | 2.25** | 0.18* |
[1] | 刘定惠, 杨永春. 甘肃省碳排放变化的因素分解及实证分析[J]. 干旱区研究, 2012, 29(3): 510-516. |
[Liu Dinghui, Yang Yongchun. Factor decomposition and demonstration analysis of carbon emission variation in Gansu Province[J]. Arid Zone Research, 2012, 29(3): 510-516.] | |
[2] |
Ang B W, Zhang F Q, Choi K H. Factorizing changes in energy and environmental indicators through decomposition[J]. Energy, 1998, 23(6): 489-495.
doi: 10.1016/S0360-5442(98)00016-4 |
[3] | 史俊晖, 戴小文. 我国省域农业隐含碳排放及其驱动因素时空动态分析[J]. 中国农业资源与区划, 2020, 41(8): 169-180. |
[Shi Junhui, Dai Xiaowen. Spatial dynamics of agricultural embodied carbon emissions in provinces of China and the related driving factors[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(8): 169-180.] | |
[4] | 王强, 伍世代, 林羽珊. 中国东南沿海地区工业能源消费碳排放的驱动因素分析[J]. 资源科学, 2015, 37(6): 1239-1248. |
[Wang Qiang, Wu Shidai, Lin Yushan. Driving factors of industrial energy consumption and carbon emissions in southeast coastal regions of China: Taking Fujian Province as a case study[J]. Resources Science, 2015, 37(6): 1239-1248.] | |
[5] | 张国兴, 苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论, 2020, 32(12): 283-294. |
[Zhang Guoxing, Su Zhaoxian. Analysis of influencing factors and scenario prediction of transportation carbon emissions in the Yellow Rive Basin[J]. Management Review, 2020, 32(12): 283-294.] | |
[6] | 王霞, 张丽君, 秦耀辰, 等. 中国制造业碳排放时空演变及驱动因素研究[J]. 干旱区地理, 2020, 43(2): 536-545. |
[Wang Xia, Zhang Lijun, Qin Yaochen, et al. Spatial-temporal evolution on the manufacturing industry’s carbon emission and its driving factor in China[J]. Arid Land Geography, 2020, 43(2): 536-545.] | |
[7] |
赖文亭, 王远, 黄琳琳, 等. 福建省行业碳排放驱动因素分解及其与经济增长脱钩关系[J]. 应用生态学报, 2020, 31(10): 3529-3538.
doi: 10.13287/j.1001-9332.202010.016 |
[Lai Wenting, Wang Yuan, Huang Linlin, et al. Decomposition of driving factors of industry-related CO2 emissions and its decoupling with economic growth in Fujian Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3529-3538.]
doi: 10.13287/j.1001-9332.202010.016 |
|
[8] |
Shan Y, Huang Q, Guan D, et al. China CO2 emission accounts 2016—2017[J]. Scientific Data, 2020, 7(1): 1-9.
doi: 10.1038/s41597-019-0340-y |
[9] |
Wang Q, Li R, Jiang R. Decoupling and decomposition analysis of carbon emissions from industry: A case study from China[J]. Sustainability, 2016, 8(10): 1059-1076.
doi: 10.3390/su8101059 |
[10] | Engo J. Decomposing the decoupling of CO2 emissions from economic growth in Cameroon[J]. Environmental Science & Pollution Research, 2018, 25(35): 35451-35463. |
[11] | 黄丽, 王武林, 龚姣. 中亚五国自华进口贸易技术溢出及碳排放影响研究[J]. 干旱区地理, 2022, 45(3): 986-997. |
[Huang Li, Wang Wulin, Gong Jiao. Research on important of technology spillover from China and the impact of carbon emissions in the five Central Asian counties[J]. Arid Land Geography, 2022, 45(3): 986-997.] | |
[12] |
Tapio P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy, 2005, 12(2): 137-151.
doi: 10.1016/j.tranpol.2005.01.001 |
[13] | 李明煜, 张诗卉, 王灿, 等. 重点工业行业碳排放现状与减排定位分析[J]. 中国环境管理, 2021, 13(3): 28-39. |
[Li Mingyu, Zhang Shihui, Wang Can, et al. The carbon emission status and emission reduction positioning of key industrial sectors[J]. Chinese Journal of Environmental Management, 2021, 13(3): 28-39.] | |
[14] | 王君华, 李霞. 中国工业行业经济增长与CO2排放的脱钩效应[J]. 经济地理, 2015, 35(5): 105-110. |
[Wang Junhua, Li Xia. The effect of sector decoupling between China’s industrial economic growth and carbon dioxide emissions[J]. Economic Geography, 2015, 35(5): 105-110.] | |
[15] | 刘博文, 张贤, 杨琳. 基于LMDI的区域产业碳排放脱钩努力研究[J]. 中国人口·资源与环境, 2018, 28(4): 78-86. |
[Liu Bowen, Zhang Xian, Yang Lin. Decoupling efforts of regional industrial development on CO2 emissions in China based on LMDI analysis[J]. China Population, Resources and Environment, 2018, 28(4): 78-86.] | |
[16] | 贺勇, 傅飞飞, 廖诺. 基于STIRPAT模型的工业研发投入对碳排放影响效应分析[J]. 科技管理研究, 2021, 41(17): 206-212. |
[He Yong, Fu Feifei, Liao Nuo. Analysis on the effect of R&D investment on carbon emission in industrial sector based on STIRPAT model[J]. Science and Technology Management Research, 2021, 41(17): 206-212.] | |
[17] | 董莹, 许宝荣, 华中, 等. 基于LMDI的甘肃省碳排放影响因素分解研究[J]. 兰州大学学报(自然科学版), 2020, 56(5): 606-614. |
[Dong Ying, Xu Baorong, Hua Zhong, et al. Factor decomposition of carbon emission in Gansu Province based on LMDI[J]. Journal of Lanzhou University (Natural Sciences Edition), 2020, 56(5): 606-614.] | |
[18] | 陈向阳. 碳排放权交易和碳税的作用机制、比较与制度选择[J]. 福建论坛(人文社会科学版), 2022(1): 75-86. |
[Chen Xiangyang. Mechanism of carbon emission trading and carbon tax, comparison and system selection[J]. Fujian Tribune, 2022(1): 75-86.] | |
[19] | 王勇, 毕莹, 王恩东. 中国工业碳排放达峰的情景预测与减排潜力评估[J]. 中国人口·资源与环境, 2017, 27(10): 131-140. |
[Wang Yong, Bi Ying, Wang Endong. Scene prediction of carbon emission peak and emission reduction potential estimation in Chinese industry[J]. China Population, Resources and Environment, 2017, 27(10): 131-140.] | |
[20] | 董棒棒, 李莉, 唐洪松, 等. 环境规制、FDI与能源消费碳排放峰值预测——以西北五省为例[J]. 干旱区地理, 2019, 42(3): 689-697. |
[Dong Bangbang, Li Li, Tang Hongsong, et al. Environmental regulation, FDI and energy consumption peak carbon emissions forecast: A case of five provinces in northwest China[J]. Arid Land Geography, 2019, 42(3): 689-697.] |
|