Arid Land Geography ›› 2025, Vol. 48 ›› Issue (1): 119-129.doi: 10.12118/j.issn.1000-6060.2024.035
• Regional Development • Previous Articles Next Articles
FU Wei1(), GONG Haixiu1, CHEN Jiancheng2
Received:
2024-01-17
Revised:
2024-04-24
Online:
2025-01-25
Published:
2025-01-21
FU Wei, GONG Haixiu, CHEN Jiancheng. Evolution of spatial correlation structure of indirect carbon emissions from household consumption in China: Based on social network analysis[J].Arid Land Geography, 2025, 48(1): 119-129.
Tab. 1
Consumption categories based on indirect carbon emissions"
消费性支出项目 | 涉及内容 | 间接碳排放系数/kg CO2·元-1 |
---|---|---|
食品 | 农林牧渔产品及服务;食品和烟草 | 0.049 |
衣着 | 纺织品;纺织服装鞋帽皮革羽绒及其制品 | 0.076 |
居住 | 非金属矿物制品;金属制品;电力、热力、燃气和水生产和供应;建筑 | 0.210 |
生活用品及服务 | 木材加工品和家具;电气机械和器材 | 0.068 |
交通通信 | 通信设备、计算机和其他电子设备;交通运输、仓储和邮政 | 0.198 |
教育文化娱乐 | 造纸印刷和文教体育用品 | 0.144 |
医疗保健 | 医药制品 | 0.117 |
其他用品及服务 | 批发和零售;住宿和餐饮 | 0.234 |
Tab. 5
Centralization analysis results of spatially correlated networks in 2022"
省市 | 点出度 | 点入度 | 点度中心度 | 中介中心度 | 接近中心度 |
---|---|---|---|---|---|
江苏 | 27 | 27 | 90.00 | 63.30 | 90.91 |
上海 | 27 | 27 | 90.00 | 58.24 | 90.91 |
北京 | 25 | 25 | 83.33 | 74.74 | 85.71 |
浙江 | 25 | 25 | 83.33 | 44.90 | 85.71 |
广东 | 18 | 18 | 60.00 | 14.47 | 71.43 |
福建 | 17 | 17 | 56.67 | 16.32 | 68.18 |
甘肃 | 12 | 12 | 40.00 | 3.85 | 62.50 |
湖北 | 12 | 12 | 40.00 | 3.45 | 62.50 |
重庆 | 10 | 10 | 33.33 | 1.59 | 60.00 |
河南 | 10 | 10 | 33.33 | 2.39 | 60.00 |
山东 | 10 | 10 | 33.33 | 8.04 | 60.00 |
湖南 | 10 | 10 | 33.33 | 1.02 | 60.00 |
四川 | 9 | 9 | 30.00 | 0.91 | 58.82 |
广西 | 9 | 9 | 30.00 | 0.91 | 58.82 |
贵州 | 9 | 9 | 30.00 | 0.91 | 58.82 |
陕西 | 8 | 8 | 26.67 | 2.47 | 57.69 |
河北 | 7 | 7 | 23.33 | 3.59 | 56.60 |
云南 | 7 | 7 | 23.33 | 0.56 | 56.60 |
青海 | 7 | 7 | 23.33 | 0.56 | 56.60 |
宁夏 | 6 | 6 | 20.00 | 0.37 | 55.56 |
黑龙江 | 6 | 6 | 20.00 | 0.27 | 55.56 |
新疆 | 6 | 6 | 20.00 | 0.37 | 55.56 |
海南 | 6 | 6 | 20.00 | 0.37 | 55.56 |
西藏 | 6 | 6 | 20.00 | 0.37 | 55.56 |
山西 | 5 | 5 | 16.67 | 0.58 | 54.55 |
吉林 | 5 | 5 | 16.67 | 0.13 | 54.55 |
安徽 | 5 | 5 | 16.67 | 0.37 | 54.55 |
内蒙古 | 5 | 5 | 16.67 | 0.29 | 53.57 |
辽宁 | 4 | 4 | 13.33 | 0.13 | 53.57 |
江西 | 4 | 4 | 13.33 | 0.12 | 53.57 |
天津 | 3 | 3 | 10.00 | 0.00 | 50.85 |
均值 | 10 | 10 | 34.41 | 9.86 | 61.77 |
[1] |
吉雪强, 张跃松. 长江经济带种植业碳排放效率空间关联网络结构及动因[J]. 自然资源学报, 2023, 38(3): 675-693.
doi: 10.31497/zrzyxb.20230308 |
[Ji Xueqiang, Zhang Yuesong. Spatial correlation network structure and drivers of carbon emission efficiency of plantation industry in Yangtze River Economic Belt[J]. Journal of Natural Resources, 2023, 38(3): 675-693.]
doi: 10.31497/zrzyxb.20230308 |
|
[2] | 华怡婷, 石宝峰. 互联网使用与家庭间接碳排放: 测度及影响因素分析[J]. 重庆大学学报(社会科学版), 2023, 29(1): 117-134. |
[Hua Yiting, Shi Baofeng. Internet use and household indirect carbon emissions: Measurement and influencing factors analysis[J]. Journal of Chongqing University (Social Science Edition), 2023, 29(1): 117-134.] | |
[3] |
邵帅, 徐俐俐, 杨莉莉. 千里“碳缘”一线牵: 中国区域碳排放空间关联网络的结构特征与形成机制[J]. 系统工程理论与实践, 2023, 43(4): 958-983.
doi: 10.12011/SETP2022-1418 |
[Shao Shuai, Xu Lili, Yang Lili. Structural characteristics and formation mechanism of spatial correlation network of regional carbon emissions in China[J]. Systems Engineering Theory and Practice, 2023, 43(4): 958-983.] | |
[4] | 彭璐璐, 李楠, 郑智远, 等. 中国居民消费碳排放影响因素的时空异质性[J]. 中国环境科学, 2021, 41(1): 463-472. |
[Peng Lulu, Li Nan, Zhang Zhiyuan, et al. Spatial-temporal heterogeneity of influencing factors of carbon emissions from Chinese household consumption[J]. China Environmental Science, 2021, 41(1): 463-472.] | |
[5] |
史琴琴, 鲁丰先, 陈海, 等. 中原经济区城镇居民消费间接碳排放时空格局及其影响因素[J]. 资源科学, 2018, 40(6): 1297-1306.
doi: 10.18402/resci.2018.06.19 |
[Shi Qinqin. Lu Fengxian, Chen Hai, et al. Temporal-spatial patterns and factors affecting indirect carbon emissions from urban consumption in the Central Plains economic region[J]. Resources Science, 2018, 40(6): 1297-1306.]
doi: 10.18402/resci.2018.06.19 |
|
[6] | 李治, 李培, 郭菊娥, 等. 城市家庭碳排放影响因素与跨城市差异分析[J]. 中国人口·资源与环境, 2013, 23(10): 87-94. |
[Li Zhi, Li Pei, Guo Ju’e, et al. Analysis of factors influencing urban household carbon emissions and cross-city differences[J]. China Population, Resources and Environment, 2013, 23(10): 87-94.] | |
[7] | 庄贵阳, 魏鸣昕. 城市引领碳达峰、碳中和的理论和路径[J]. 中国人口·资源与环境, 2021, 31(9): 114-121. |
[Zhuang Guiyang, Wei Mingxin. Theory and pathway of city leadership in emission peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 114-121.] | |
[8] | Belaid F, Rault C. Energy expenditure in Egypt: Empirical evidence based on a quantile regression approach[J]. Environmental Modeling & Assessment, 2021, 26(4): 511-528. |
[9] | 韩君, 牛士豪, 高瀛璐. 新发展阶段居民家庭碳排放核算及影响因素研究[J]. 兰州财经大学学报, 2023, 39(1): 68-80. |
[Han Jun, Niu Shihao, Gao Yinglu. Research on accounting and influencing factors of household carbon emissions in the new development stage[J]. Journal of Lanzhou University of Finance and Economics, 2023, 39(1): 68-80.] | |
[10] | Bin S, Dowlatabadi H. Consumer lifestyle approach to US energy use and the related CO2 emissions[J]. Energy Policy, 2005, 33(2): 197-208. |
[11] | Fan J, Guo X, Marinova D, et al. Embedded carbon footprint of Chinese urban households: Structure and changes[J]. Journal of Cleaner Production, 2012, 33: 50-59. |
[12] | 范玲, 汪东. 我国居民间接能源消费碳排放的测算及分解分析[J]. 生态经济, 2014, 30(7): 28-32. |
[Fan Ling, Wang Dong. Calculation and decomposition analysis on carbon emissions of indirect residents’ consumption in China[J]. Ecological Economy, 2014, 30(7): 28-32.] | |
[13] | 陈为公, 程准, 张娜, 等. 山东省农村居民生活间接碳排放影响因素[J]. 沈阳大学学报(社会科学版), 2021, 23(3): 273-278, 286. |
[Chen Weigong, Cheng Zhun, Zhang Na, et al. Influencing factors of indirect carbon emissions in rural residents in Shandong Province[J]. Journal of Shenyang University (Social Science Edition), 2021, 23(3): 273-278, 286.] | |
[14] |
吴茜, 陈强强. 甘肃省行业碳排放影响因素及脱钩努力研究[J]. 干旱区地理, 2023, 46(2): 274-283.
doi: 10.12118/j.issn.1000-6060.2022.126 |
[Wu Xi, Chen Qiangqiang. Influencing factors and decoupling efforts of industry-related carbon emissions in Gansu Province[J]. Arid Land Geography, 2023, 46(2): 274-282.]
doi: 10.12118/j.issn.1000-6060.2022.126 |
|
[15] | 吴开亚, 王文秀, 张浩, 等. 上海市居民消费的间接碳排放及影响因素分析[J]. 华东经济管理, 2013, 27(1): 1-7. |
[Wu Kaiya, Wang Wenxiu, Zhang Hao, et al. Indirect carbon emissions of Shanghai’s residents consumption and its influence factors[J]. East China Economic Management, 2013, 27(1): 1-7.] | |
[16] |
杜娅明, 白永平, 梁建设, 等. 黄河流域旅游业碳排放效率综合测度及影响因素研究[J]. 干旱区地理, 2023, 46(12): 2074-2085.
doi: 10.12118/j.issn.1000-6060.2023.193 |
[Du Yaming, Bai Yongping, Liang Jianshe, et al. Comprehensive measurement and influencing factors of carbon emission efficiency of tourism in the Yellow River Basin[J]. Arid Land Geography, 2023, 46(12): 2074-2085.]
doi: 10.12118/j.issn.1000-6060.2023.193 |
|
[17] |
邹嘉龄, 刘卫东. 2001—2013年中国与“一带一路”沿线国家贸易网络分析[J]. 地理科学, 2016, 36(11): 1629-1636.
doi: 10.13249/j.cnki.sgs.2016.11.004 |
[Zou Jialing, Liu Weidong. Trade network of China and countries along “Belt and Road Initiative” areas from 2001 to 2013[J]. Scientia Geographica Sinica, 2016, 36(11): 1629-1636.] | |
[18] | Liu W, Xu J, Li J. The influence of poverty alleviation resettlement on rural household livelihood vulnerability in the western mountainous areas[J]. Sustainability, 2018, 10(8): 2793, doi: 10.3390/su10082793. |
[19] | 邵璇璇, 姚永玲. 长江中游城市群的空间网络特征及其影响机制[J]. 城市问题, 2019, 10: 15-26. |
[Shao Xuanxuan, Yao Yongling. Spatial network characteristics and influence mechanisms of city clusters in the middle reaches of the Yangtze River[J]. Urban Problems, 2019, 10: 15-26.] | |
[20] | Mi Z, Meng J, Green F, et al. China’s “exported carbon” peak: Patterns, drivers, and implications[J]. Geophysical Research Letters, 2018, 45: 4309-4318. |
[21] | 孙敏, 杨红娟, 刘海洋. 少数民族农户生活消费间接碳排放影响因素研究[J]. 经济问题探索, 2016(5): 51-58. |
[Sun Min, Yang Hongjuan, Liu Haiyang. Research on influencing factors of indirect carbon emissions from household consumption of ethnic minority farmers[J]. Exploration of Economic Issues, 2016(5): 51-58.] | |
[22] | 王晓平, 冯庆, 宋金昭. 成渝城市群碳排放空间关联结构演化及影响因素[J]. 中国环境科学, 2020, 40(9): 4123-4134. |
[Wang Xiaoping, Feng Qing, Song Jinzhao. The spatial association structure evolution of carbon emissions in Chengdu-Chongqing urban agglomeration and its influence mechanism[J]. China Environmental Science, 2020, 40(9): 4123-4134.] | |
[23] | Mayer H M, Ullman E L. American commodity flow: A geographical interpretation of rail and water traffic based on principles of spatial interchange[J]. Geographical Review, 1959, 49(1): 142, doi: 10.2307/211582. |
[24] |
孙中瑞, 樊杰, 孙勇, 等. 中国绿色科技创新效率空间关联网络结构特征及影响因素[J]. 经济地理, 2022, 42(3): 33-43.
doi: 10.15957/j.cnki.jjdl.2022.03.004 |
[Sun Zhongrui, Fan Jie, Sun Yong, et al. Structural characteristics and influencing factors of spatial correlation network of green science and technology innovation efficiency in China[J]. Economic Geography, 2022, 42(3): 33-43.]
doi: 10.15957/j.cnki.jjdl.2022.03.004 |
|
[25] | 赵林, 高晓彤, 刘焱序, 等. 中国包容性绿色效率空间关联网络结构演变特征分析[J]. 经济地理, 2021, 41(9): 69-78, 90. |
[Zhao Lin, Gao Xiaotong, Liu Yanxu, et al. Evolution characteristics of inclusive green efficiency spatial association network structure in China[J]. Economic Geography, 2021, 41(9): 69-78, 90.] | |
[26] | Wasserman S, Faust K. Social network analysis: Methods and applications[J]. Contemporary Sociological, 1994, 91: 219-220. |
[27] | 杨上广, 王春兰, 刘淋. 上海家庭出行碳排放基本特征、空间模式及影响因素研究[J]. 中国人口·资源与环境, 2014, 24(6): 148-153. |
[Yang Shangguang, Wang Chunlan, Liu Lin. Study on the basic characteristics, spatial patterns and influencing factors of carbon emissions of household travel in Shanghai[J]. China Population, Resources and Environment, 2014, 24(6): 148-153.] | |
[28] | 刘英恒太, 杨丽娜. 中国数字经济产出的空间关联网络结构与影响因素研究[J]. 技术经济, 2021, 40(9): 137-145. |
[Liu Yinghengtai, Yang Lina. Research on the structure and influencing factors of spatially correlate network of China’s digital economy output[J]. Technology Economics, 2021, 40(9): 137-145.] | |
[29] | 孙亚男, 刘华军, 刘传明, 等. 中国省际碳排放的空间关联性及其效应研究——基于SNA的经验考察[J]. 上海经济研究, 2016(2): 82-92. |
[Sun Yanan, Liu Huajun, Liu Chuanming, et al. Study on spatial correlation and effect of interprovincial carbon emissions in China: An empirical investigation based on SNA[J]. Shanghai Economic Research Journal, 2016(2): 82-92.] |
|