Arid Land Geography ›› 2021, Vol. 44 ›› Issue (2): 525-533.doi: 10.12118/j.issn.1000–6060.2021.02.23
• Biology and Pedology • Previous Articles Next Articles
MIAO Yu1(),GAO Guanlong1,2,3(),LI Wei1
Received:
2020-10-08
Revised:
2020-11-23
Online:
2021-03-25
Published:
2021-04-14
Contact:
Guanlong GAO
E-mail:my09296822@163.com;gaoguanlong@sxu.edu.cn
MIAO Yu,GAO Guanlong,LI Wei. Environmental response and modeling of stomatal conductance of apple trees on the Loess Plateau[J].Arid Land Geography, 2021, 44(2): 525-533.
Tab. 1
Correlation coefficient between each environmental factor and stomatal conductance (gs)"
PAR/W·m-2 | Ca/μmol·mol-1 | VPD/kPa | Ta/℃ | |
---|---|---|---|---|
0.732 | 0.423 | 0.533 | 0.665 | 0.484 |
0.877 | 0.481 | 0.555 | 0.874 | 0.527 |
0.815 | 0.524 | 0.818 | 0.677 | 0.693 |
0.746 | 0.498 | 0.721 | 0.772 | 0.628 |
0.838 | 0.407 | 0.751 | 0.714 | 0.516 |
0.492 | 0.400 | 0.801 | 0.843 | 0.642 |
0.998 | 0.522 | 0.513 | 0.510 | 0.590 |
0.736 | 0.830 | 0.646 | 0.782 | 0.671 |
0.911 | 0.969 | 0.958 | 0.775 | 0.897 |
0.649 | 0.931 | 1.000 | 0.818 | 0.833 |
0.864 | 0.804 | 0.893 | 0.882 | 0.723 |
0.678 | 0.856 | 0.947 | 0.992 | 0.753 |
0.834 | 0.521 | 0.476 | 0.419 | 0.497 |
0.708 | 0.678 | 0.734 | 0.893 | 0.896 |
0.612 | 0.611 | 0.887 | 0.915 | 0.698 |
0.822 | 0.845 | 0.897 | 0.745 | 0.718 |
0.668 | 0.850 | 0.702 | 0.537 | 0.729 |
0.561 | 0.937 | 0.717 | 0.529 | 0.771 |
0.854 | 0.646 | 0.817 | 0.810 | 0.645 |
0.859 | 0.671 | 0.841 | 0.834 | 0.671 |
0.755 | 0.716 | 0.486 | 0.510 | 0.558 |
0.748 | 0.797 | 0.445 | 0.508 | 0.544 |
0.856 | 0.802 | 0.334 | 0.413 | 0.468 |
0.480 | 0.850 | 0.509 | 0.604 | 0.499 |
0.356 | 0.702 | 0.646 | 0.790 | 0.599 |
0.704 | 0.732 | 0.574 | 0.520 | 0.978 |
0.787 | 0.714 | 0.648 | 0.541 | 0.774 |
0.767 | 0.840 | 0.673 | 0.580 | 0.662 |
0.864 | 0.966 | 0.932 | 0.770 | 0.592 |
0.341 | 0.831 | 0.594 | 0.445 | 0.946 |
[1] | 石建红, 周锁铨, 余华, 等. 鄱阳湖流域典型树种夏季气孔导度模型及影响因素比较[J]. 环境科学研究, 2010,23(1):33-40. |
[ Shi Jianhong, Zhou Suoquan, Yu Hua, et al. Stomatal conductance models of typical tree species in the basin of Poyang Lake in summer and comparison of their influencing factors[J]. Research of Environmental Sciences, 2010,23(1):33-40. ] | |
[2] | 张中典, 张大龙, 李建明, 等. 黄瓜气孔导度、水力导度的环境响应及其调控蒸腾效应[J]. 农业机械学报, 2016,47(6):139-147. |
[ Zhang Zhongdian, Zhang Dalong, Li Jianming, et al. Environmental response of stomatal and hydraulic conductances and their effects on regulating transpiration of cucumber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(6):139-147. ] | |
[3] | 高冠龙, 张小由, 鱼腾飞, 等. 极端干旱条件下胡杨叶片气孔导度模拟[J]. 干旱区地理, 2016,39(3):607-612. |
[ Gao Guanlong, Zhang Xiaoyou, Yu Tengfei, et al. Simulation of leaf stomatal conductance of Populus euphratica Oliv under extremely dry conditions[J]. Arid Land Geography, 2016,39(3):607-612. ] | |
[4] | 张敏. 蓄水坑灌条件下苹果树光合特性与影响因子的分析研究[D]. 太原: 太原理工大学, 2015. |
[ Zhang Min. The analysis of apple photosynthetic characteristic and relationship with impact factors under water storage pit irrigation[D]. Taiyuan: Taiyuan University of Technology, 2015. ] | |
[5] | 马文云. 蓄水坑灌下灌水上下限对不同尺度苹果树蒸腾特性的影响[D]. 太原: 太原理工大学, 2019. |
[ Ma Wenyun. Effects of irrigation upper and lower limits on transpiration characteristics of apple trees at different scales under water storage pit irrigation[D]. Taiyuan: Taiyuan University of Technology, 2019. ] | |
[6] | 仇群伊. 蓄水坑灌条件下苹果树蒸发蒸腾特性研究[D]. 太原: 太原理工大学, 2014. |
[ Qiu Qunyi. Research on characteristics of evaporation and transpiration of apple trees under water storage pit irragation[D]. Taiyuan: Taiyuan University of Technology, 2014. ] | |
[7] | 李波, 郭向红, 孙西欢, 等. 蓄水坑灌条件下不同灌水下限幼龄苹果树叶片光合特性研究[J], 节水灌溉, 2016,6(5):51-56. |
[ Li Bo, Guo Xianghong, Sun Xihuan, et al. A study on leaf photosynjournal properties of young apple trees at different lower limt of irrigation under water storage pit irrigation conditions[J]. Water Saving Irrigation, 2016,6(5):51-56. ] | |
[8] | 李蕊. 蓄水坑灌坑深及灌水对矮砧苹果幼树生长影响研究[D]. 太原: 太原理工大学, 2017. |
[ Li Rui. Effect of pit depths and irrigation under water storage pit irrigation on growth of dwarf stock young apple trees[D]. Taiyuan: Taiyuan University of Technology, 2017. ] | |
[9] | 赵文渊, 孙西欢, 马娟娟, 等. 蓄水坑灌下苹果树冠层导度日变化及影响因子研究[J]. 节水灌溉, 2020(9):64-68, 74. |
[ Zhao Wenyuan, Sun Xihuan, Ma Juanjuan, et al. Study on the diurnal variation of canopy conductance of apple trees under water storage pit irrigation and its influencing factors[J]. Water Saving Irrigation, 2020(9):64-68, 74. ] | |
[10] | 郑利剑. 基于稳定同位素技术的蓄水坑灌下矮砧苹果树水分迁移机制研究[D]. 太原: 太原理工大学, 2019. |
[ Zheng Lijian. Moisture migration mechanism of dwarfing apple tree under water storage pit irrigation based on stable isotope technology[D]. Taiyuan: Taiyuan University of Technology, 2019. ] | |
[11] | 高照全, 李志强, 陈吉虎. 不同水分条件下盆栽苹果树蒸腾速率动态模拟[J]. 植物生理学报, 2013,49(12):1385-1392. |
[ Gao Zhaoquan, Li Zhiqiang, Chen Jihu. Dynamic simulation of transpiration rates of potted apple (Malus domestica) trees under different water condition[J]. Plant Physiology Journal, 2013,49(12):1385-1392. ] | |
[12] | Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society B: Biological Sciences. 1976,273(927):593-610. |
[13] | Ball J T, Woodrow I E, Berry J A. A model predictingstomatal conductance and its contribution to the control of photosynjournal under different environmental conditions[J]. Progress in Photosynjournal Research Springer, 1987: 221-224. |
[14] | Legates D R, Mccabe G J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation[J]. Water Resources Research. 1999,35(1):233-241. |
[15] | 高冠龙, 冯起, 刘贤德 . 等. 三种经验模型模拟荒漠河岸柽柳叶片气孔导度[J]. 生态学报, 2020,40(10):1-9. |
[ Gao Guanlong, Feng Qi, Liu Xiande, et al. Simulating the leaf stomatal conductance of the desert riparian Tamarix ramosissima Ledeb based on three empirical models[J]. Acta Ecologica Sinica, 2020,40(10):1-9. ] | |
[16] | 刘延波, 孙洪荣, 项阳, 等. 灰色关联度分析法筛选贵州玉米苗期抗旱种质[J]. 种子, 2014,33(10):74-77. |
[ Liu Yanbo, Sun Hongrong, Xiang Yang, et al. Germplasm selection of drought-resistance maize seedlings by grey relational grade analysis[J]. Seed, 2014,33(10):74-77. ] | |
[17] | 司建华, 常宗强, 苏永红, 等. 胡杨叶片气孔导度特征及其对环境因子的响应[J]. 西北植物学报, 2008,28(1):125-130. |
[ Si Jianhua, Chang Zongqiang, Su Yonghong, et al. Stomatal conductance characteristics of Populus euphratica leaves and response to environmental factors in the extreme arid region[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008,28(1):125-130. ] | |
[18] | 李明霞, 耿桂俊, 白岗栓, 等. 更新修剪对盛果末期苹果光合能力及果实品质的影响[J]. 西北农林科技大学学报(自然科学版), 2011,39(1):179-185. |
[ Li Mingxia, Geng Guijun, Bai Gangshuan, et al. Effect of renewal pruning on apple photosynthetic ability and fruit quality in final full productive stage[J]. Journal of Northwest A & F University(Natural Science Edition), 2011,39(1):179-185. ] | |
[19] | 柴梦滢. 蓄水坑灌下苹果树叶片光合效率的影响研究[D]. 太原: 太原理工大学, 2018. |
[ Chai Mengying. Photosynthetic efficiency of apple leaves under water storage pit irrigation[D]. Taiyuan: Taiyuan University of Technology, 2018. ] | |
[20] | 高娟. 施氮对蓄水坑灌苹果树叶片光合特性及果树生长的影响研究[D]. 太原: 太原理工大学, 2019. |
[ Gao Juan. Effects of nitrogen application on growth and photosynthetic characteristics of apple trees under water storage pit irrigation[D]. Taiyuan: Taiyuan University of Technology, 2019. ] | |
[21] | 王海珍, 韩路, 徐雅丽, 等. 灰胡杨叶片气孔导度特征及数值模拟[J]. 林业科学, 2016,52(1):136-142. |
[ Wang Haizhen, Han Lu, Xu Yali, et al. Characteristics of stomatal conductance of Populus pruinosa and the quantitative simulation[J]. Scientia Silvae Sinicae, 2016,52(1):136-142. ] | |
[22] | 阮成江, 李代琼. 黄土丘陵区沙棘气孔导度及其影响因子[J]. 西北植物学报, 2001,21(6):30-36. |
[ Ruan Chengjiang, Li Daiqiong. Stomatal conductance and influence factors of seabuckthorn in Loess Hilly Region[J]. Acta Botanica Boreali-Occidentalia Sinica, 2001,21(6):30-36. ] | |
[23] | 唐凤德, 武耀祥, 韩士杰, 等. 长白山阔叶红松林叶片气孔导度与环境因子的关系[J]. 生态学报, 2008,28(11):5649-5655. |
[ Tang Fengde, Wu Yaoxiang, Han Shijie, et al. Relationship of stamatal conductance of leaf with environmental factors in broad-leaved Korean pine forest at Changbai Mountain[J]. Acta Ecologica Sinica, 2008,28(11):5649-5655. ] | |
[24] | 周丽娜, 刘艳, 张蕾, 等. 林下参叶片气孔导度与环境因子的关系研究[J]. 安徽农业科学, 2009,37(33):16616-16618. |
[ Zhou Lina, Liu Yan, Zhang Lei, et al. Research on the relationship between the stomatal conductance and environmental factors of ginseng under forest[J]. Journal of Anhui Agricultural Sciences, 2009,37(33):16616-16618. ] | |
[25] | 马蓉, 麦麦提吐尔逊·艾则孜, 海米提·依米提, 等. 新疆博斯腾湖北岸芦苇叶片气孔导度特征及数值模拟[J]. 西北农业学报, 2016,25(1):123-128. |
[ Ma Rong, Mamattursun Eziz, Hamid Yimit, et al. Characteristics and quantitatives simulation of stomotal conductance of phragmites communis leaves in north shore of Bosten Lake in Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016,25(1):123-128. ] | |
[26] | 苏里坦, 阿迪力·吐拉尔别克, 王兴勇, 等. 地下变水位条件下塔里木河下游河岸胡杨林蒸腾模型[J]. 干旱区地理, 2016,37(5):916-921. |
[ Su Litan, Adili Tulaerbieke, Wang Xingyong, et al. Transpiration model of Populous euphratica in the lower reaches of Tarim River under groundwater fluctuation[J]. Arid Land Geography, 2016,37(5):916-921. ] | |
[27] | 刘树宝, 陈亚宁, 李卫红, 等. 黑河下游不同林龄胡杨水分来源的 D、18O同位素示踪[J]. 干旱区地理, 2014,37(5):988-995. |
[ Liu Shubao, Chen Yaning, Li Weihong, et al. Application of D and 18O stable isotopes in analyzing the water sources of different ages of Populus euphratica in the lower reaches of the Heihe River[J]. Arid Land Geography, 2014,37(5):988-995. ] |
|