Arid Land Geography ›› 2024, Vol. 47 ›› Issue (8): 1304-1313.doi: 10.12118/j.issn.1000-6060.2024.140
• The Third Xinjiang Scientific Expedition • Previous Articles Next Articles
ZHANG Lu1(), SUN Meiping1,2(), YAN Xin1, WANG Weisheng1, FAN Ruiyi1
Received:
2024-03-04
Revised:
2024-05-08
Online:
2024-08-25
Published:
2024-09-02
Contact:
SUN Meiping
E-mail:2022212938@nwnu.edu.cn;sunmeiping1982@nwnu.edu.cn
ZHANG Lu, SUN Meiping, YAN Xin, WANG Weisheng, FAN Ruiyi. Investigation and evaluation of surface solar radiation on the north slope of Kunlun Mountains based on multi-source data[J].Arid Land Geography, 2024, 47(8): 1304-1313.
Tab. 1
Basic information of radiation products"
数据类型 | 数据 | 来源 | 数据处理方法 | 时段 | 空间分辨率 | 时间分辨率 |
---|---|---|---|---|---|---|
卫星遥感产品 | 均一化中国陆表气候观测格点数据集(SSR-wang) | 青藏高原科 学数据中心 | 地理加权回归 | 1983.07—2017.06 | 0.1° | 逐月 |
全球高分辨率地表太阳辐射数据集(SSR-tang) | SUNFLUX方案 | 1983.07—2018.12 | 0.1° | 3 h | ||
中国区域地面气象要素驱动数据集(CMFD) | Yang-混合模型 | 1979.01—2018.12 | 0.1° | 3 h | ||
再分析数据 | ERA5 | ECMWF | 4D-Var同化 | 1979年至今 | 0.25°×0.25° | 1 h |
MERRA-2 | NASA | 4D-Var耦合同化 | 1980年至今 | 0.5°×0.625° | 1 h |
Tab. 2
Temporal trends of atmospheric factors on the north slope of Kunlun Mountains from 1984 to 2023"
时间尺度 | 总云量/(10a)-1 | 低云量/(10a)-1 | AOD/(10a)-1 | 水汽/kg·m-2·(10a)-1 | 臭氧/DU·(10a)-1 |
---|---|---|---|---|---|
年 | -0.0057 | 0.0019 | 0.0049 | 0.2779* | -2.2210* |
春季 | -0.0178* | -0.0024 | 0.0032 | 0.0732 | -3.2164 |
夏季 | 0.0091 | 0.0082* | 0.0180* | 0.7234* | -1.5928 |
秋季 | 0.0033 | 0.0032* | 0.0045 | 0.3746* | -1.2893 |
冬季 | -0.0174* | -0.0013 | -0.0059 | -0.0596 | -2.7857 |
[1] |
Renner M, Wild M, Schwarz M, et al. Estimating shortwave clear-sky fluxes from hourly global radiation records by quantile regression[J]. Earth and Space Science, 2019, 6(8): 1532-1546.
doi: 10.1029/2019EA000686 |
[2] | Wang K, Dickinson R E, Ma Q, et al. Measurement methods affect the observed global dimming and brightening[J]. Journal of Climate, 2013, 26(12): 4112-4120. |
[3] | Wild M, Folini D, Schär C, et al. The global energy balance from a surface perspective[J]. Climate Dynamics, 2013, 40(11): 3107-3134. |
[4] | Liang S, Wang K, Zhang X, et al. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 225-240. |
[5] | Zhang X, Liang S, Wild M, et al. Analysis of surface incident shortwave radiation from four satellite products[J]. Remote Sensing of Environment, 2015, 165: 186-202. |
[6] | Wild M, Ohmura A, Gilgen H, et al. Validation of general circulation model radiative fluxes using surface observations[J]. Journal of Climate, 1995, 8(5): 1309-1324. |
[7] |
Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 2010, 329(5993): 834-838.
doi: 10.1126/science.1184984 pmid: 20603496 |
[8] | Wang L, Kisi O, Zounemat-Kermani M, et al. Solar radiation prediction using different techniques: Model evaluation and comparison[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 384-397. |
[9] | Liepert B G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990[J]. Geophysical Research Letters, 2002, 29(10): 61, doi: 10.1029/2002GL014910. |
[10] | Xia X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954—2005[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D7): D00K06, doi: 10.1029/2009JD012879. |
[11] | Yang S, Wang X L, Wild M. Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958—2016)[J]. Journal of Climate, 2019, 32(18): 5901-5913. |
[12] | Feng F, Wang K. Determining factors of monthly to decadal variability in surface solar radiation in China: Evidences from current reanalyses[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9161-9182. |
[13] | Tang W, Yang K, Qin J, et al. A revisit to decadal change of aerosol optical depth and its impact on global radiation over China[J]. Atmospheric Environment, 2017, 150: 106-115. |
[14] | Wang C, Zhang Z, Tian W. Factors affecting the surface radiation trends over China between 1960 and 2000[J]. Atmospheric Environment, 2011, 45(14): 2379-2385. |
[15] | Wang Z, Zhang M, Wang L, et al. Long-term evolution of clear sky surface solar radiation and its driving factors over east Asia[J]. Atmospheric Environment, 2021, 262: 118661, doi: 10.1016/j.atmosenv.2021.118661. |
[16] | Mckenzie R L, Aucamp P J, Bais A F, et al. Changes in biologically-active ultraviolet radiation reaching the earth’s surface[J]. Photochemical & Photobiological Sciences, 2007, 6(3): 218-231. |
[17] | Zhou Y, Liu Y, Wang D, et al. A review on global solar radiation prediction with machine learning models in a comprehensive perspective[J]. Energy Conversion and Management, 2021, 235: 113960, doi: 10.1016/j.enconman.2021.113960. |
[18] | Zhou Z, Lin A, Wang L, et al. Trends in downward surface shortwave radiation from multi-source data over China during 1984—2015[J]. International Journal of Climatology, 2020, 40(7): 3467-3485. |
[19] |
张连成, 胡列群, 李帅, 等. 基于RS的昆仑山区夏季雪线高程变化及其影响因素分析[J]. 冰川冻土, 2019, 41(3): 546-553.
doi: 10.7522/j.issn.1000-0240.2019.0024 |
[Zhang Liancheng, Hu Liequn, Li Shuai, et al. Analyses of variation of summer snowline elevation and its influencing factors in the Kunlun Mountains based on RS, 2001—2015[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 546-553.]
doi: 10.7522/j.issn.1000-0240.2019.0024 |
|
[20] | 许有鹏, 高蕴珏, 杨戍. 昆仑山北坡河流水文水资源特征研究[J]. 地理科学, 1994, 14(4): 338-346, 390. |
[Xu Youpeng, Gao Yunjue, Yang Shu. Approach to water resource characteristics of rivers in north slope area of the Kunlun Mountains[J]. Scientia Geographica Sinica, 1994, 14(4): 338-346, 390.]
doi: 10.13249/j.cnki.sgs.1994.04.338 |
|
[21] |
Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
doi: 10.1038/s41561-019-0513-5 pmid: 31915463 |
[22] | Boilley A, Wald L. Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface[J]. Renewable Energy, 2015, 75: 135-143. |
[23] | Yang D, Bright J M. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years[J]. Solar Energy, 2020, 210: 3-19. |
[24] | Feng F, Wang K. Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China[J]. Earth System Science Data, 2021, 13(3): 907-922. |
[25] | Tang W, Yang K, Qin J, et al. A 16-year dataset (2000—2015) of high-resolution (3 h, 10 km) global surface solar radiation[J]. Earth System Science Data, 2019, 11(4): 1905-1915. |
[26] |
He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7(1): 25, doi: 10.1038/s41597-020-0369-y.
pmid: 31964891 |
[27] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[28] |
胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162.
doi: 10.11821/dlxb202105008 |
[Hu Pan, Chen Bo, Shi Peijun. Spatiotemporal patterns and influencing factors of rainstorm-induced flood disasters in China[J]. Acta Geographica Sinica, 2021, 76(5): 1148-1162.]
doi: 10.11821/dlxb202105008 |
|
[29] |
田浩, 刘琳, 张正勇, 等. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729.
doi: 10.11821/dlxb202207010 |
[Tian Hao, Liu Lin, Zhang Zhengyong, et al. Spatiotemporal diversity and attribution analysis of land surface temperature in China from 2001 to 2020[J]. Acta Geographica Sinica, 2022, 77(7): 1713-1729.]
doi: 10.11821/dlxb202207010 |
|
[30] | 张淑花, 李新功, 李奇虎, 等. 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理, 2022, 45(3): 734-745. |
[Zhang Shuhua, Li Xingong, Li Qihu, et al. Estimation of temporal and spatial distribution of solar radiation over Tizinafu River Basin and analysis of its influencing factors[J]. Arid Land Geography, 2022, 45(3): 734-745.] | |
[31] |
张星星, 吕宁, 姚凌, 等. ECMWF地表太阳辐射数据在我国的误差及成因分析[J]. 地球信息科学学报, 2018, 20(2): 254-267.
doi: 10.12082/dqxxkx.2018.170381 |
[Zhang Xingxing, Lü Ning, Yao Ling, et al. Error analysis of ECMWF surface solar radiation data in China[J]. Journal of Geo-information Science, 2018, 20(2): 254-267.] | |
[32] |
张仪辉, 梁康, 刘昌明, 等. 尼洋河流域极端气候时空分布特征及其可能成因[J]. 地理研究, 2022, 41(10): 2808-2820.
doi: 10.11821/dlyj020211104 |
[Zhang Yihui, Liang Kang, Liu Changming, et al. Spatio-temporal distribution characteristics and possible causes of extreme climate in the Niyang River Basin[J]. Geographical Research, 2022, 41(10): 2808-2820.] | |
[33] | You Q, Sanchez-Lorenzo A, Wild M, et al. Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations[J]. Climate Dynamics, 2013, 40(7): 2073-2086. |
[34] | 郭晓宁, 杨延华, 马元仓, 等. 柴达木盆地春季沙尘暴变化特征分析[J]. 干旱区资源与环境, 2018, 32(8): 107-113. |
[Guo Xiaoning, Yang Yanhua, Ma Yuancang, et al. The characteristics of the sandstorm weather in Qaidam Basin[J]. Journal of Arid Land Resources and Environment, 2018, 32(8): 107-113.] | |
[35] | Wang Y, Wild M. A new look at solar dimming and brightening in China[J]. Geophysical Research Letters, 2016, 43(22): 11777-11785. |
[36] | Tang W, Yang K, Qin J, et al. Solar radiation trend across China in recent decades: A revisit with quality-controlled data[J]. Atmospheric Chemistry and Physics, 2011, 11(1): 393-406. |
[37] | Yang K, Ding B, Qin J, et al. Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J]. Geophysical Research Letters, 2012, 39(20): L20710, doi: 10.1029/2012GL053733. |
[38] | Yu L, Zhang M, Wang L, et al. Variability of surface solar radiation under clear skies over Qinghai-Tibet Plateau: Role of aerosols and water vapor[J]. Atmospheric Environment, 2022, 287: 119286, doi: 10.1016/j.atmosenv.2022.119286. |
[39] | Jia R, Liu Y, Chen B, et al. Source and transportation of summer dust over the Tibetan Plateau[J]. Atmospheric Environment, 2015, 123: 210-219. |
[40] | 周秀骥, 李维亮, 陈隆勋, 等. 青藏高原地区大气臭氧变化的研究[J]. 气象学报, 2004, 62(5): 513-527. |
[Zhou Xiuji, Li Weiliang, Chen Longxun, et al. Study of ozone change over Tibetan Plateau[J]. Acta Meteorologica Sinica, 2004, 62(5): 513-527.] |
[1] | XIA Tingting, XUE Xuan, WANG Haowei, XU Wenzhe, SHENG Ziyi, WANG Yang. Changes in terrestrial water storage and its drivers on the north slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(8): 1292-1303. |
[2] | ZHU Lei, LI Yannan, XU Jiahui, HU Jing, ZHU Fang, LIANG Mangmang. Spatial distribution pattern and causes of ice and snow tourism in China [J]. Arid Land Geography, 2024, 47(8): 1399-1410. |
[3] | CHEN Cong, TANG Ying, SHI Chengyong, DU Yifan, ZHAO Lina, JIANG Xuyan. Spatial distribution and regional cooperative conservation of heritage resources in the Yellow River Basin [J]. Arid Land Geography, 2024, 47(7): 1220-1232. |
[4] | ZHANG Mingdou, REN Yanting, ZHOU Liang. Spatiotemporal evolution characteristics and influencing factors of urban ecological resilience in the Yellow River Basin [J]. Arid Land Geography, 2024, 47(3): 445-454. |
[5] | TANG Yu, XUE Dongqian, SONG Yongyong, YE Hao, WANG Sha. Spatial pattern and influence mechanism of night-time cultural tourism consumption agglomeration areas in China [J]. Arid Land Geography, 2024, 47(3): 485-495. |
[6] | JIANG Yuekun, SHI Pengjuan. Spatiotemporal evolution and its affecting factors of urban-rural income gap at the city-level scale in China [J]. Arid Land Geography, 2024, 47(1): 147-157. |
[7] | LI Shiyi, GUAN Quanli. Influence of farmers’ irrigation behavior goals on irrigation water efficiency: A case of Xayar County [J]. Arid Land Geography, 2024, 47(1): 48-57. |
[8] | YANG Yu, SONG Futie, ZHANG Jie. Spatial structure characteristics and influencing factors of financial network of China based on geodetectors [J]. Arid Land Geography, 2023, 46(9): 1524-1535. |
[9] | LI Jianhui, CHEN Lin, DANG Zheng. Spatial pattern and influencing factors of patriotic education bases in the Yellow River Basin [J]. Arid Land Geography, 2023, 46(9): 1536-1544. |
[10] | ZHANG Hao, HAN Zenglin, QIAO Guorong, WANG Hui, WANG Hongye, DUAN Ye. Patterns and influencing factors of tourism economic linkages between cities in the Yellow River Basin [J]. Arid Land Geography, 2023, 46(8): 1344-1354. |
[11] | BAI Yang,HU Jingxuan,CHEN Chunyan,LU Wen. Regional differences and influencing factors of efficiency of tourism aid for Xinjiang: Based on three-stage DEA and Tobit model [J]. Arid Land Geography, 2023, 46(8): 1366-1375. |
[12] | WU Haijuan, ZHENG Fang, YI Jieyan. Residential satisfaction and its influencing factors in ecological immigrant villages and towns [J]. Arid Land Geography, 2023, 46(8): 1387-1396. |
[13] | KANG Ligang, CAO Shengkui, CAO Guangchao, YAN Li, CHEN Lianxuan, LI Wenbin, ZHAO Haoran. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin [J]. Arid Land Geography, 2023, 46(7): 1084-1097. |
[14] | XIA Wenhao, WANG Mingyang, JIANG Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1145-1154. |
[15] | KONG Deming, HAO Lisha, XIA Siyou, LI Hongbo. Food security in the argo-pastoral ecotone of northern China from the perspective of grain yield [J]. Arid Land Geography, 2023, 46(5): 782-792. |
|