Arid Land Geography ›› 2023, Vol. 46 ›› Issue (4): 614-624.doi: 10.12118/j.issn.1000-6060.2022.302
• Plant Ecology • Previous Articles Next Articles
LUO Jiayan1(),ZHANG Jing1(),XU Mengran1,MO Yu1,TONG Liga2
Received:
2022-06-21
Revised:
2022-08-15
Online:
2023-04-25
Published:
2023-04-28
LUO Jiayan, ZHANG Jing, XU Mengran, MO Yu, TONG Liga. Vegetation dynamic and its driving force and multi-scenario prediction in Otindag Sandy Land[J].Arid Land Geography, 2023, 46(4): 614-624.
Tab. 2
Parameters for multi-scenario prediction"
情景 | 情景名称 | 情景变化参数 |
---|---|---|
惯性发展情景 | 惯性发展 | 驱动因子不做处理,遵循NDVI的惯性发展规律 |
气候变化情景1 | 降水增多 | 调整降水值,将降水的值总体提升25%,其余因子不做处理 |
降水降低 | 调整降水值,将降水的值总体降低25%,其余因子不做处理 | |
风速提高 | 调整风速值,将风速的值总体提升25%,其余因子不做处理 | |
风速降低 | 调整风速值,将风速的值总体降低25%,其余因子不做处理 | |
经济优先情景2 | 放牧压力增加 | 调整牲畜数量,将牲畜数量的值总体提升50%,其余因子不做处理 |
生态保护情景2 | 放牧压力减少 | 调整牲畜数量,将牲畜数量的值总体降低50%,其余因子不做处理 |
Tab. 3
Variation of q value of driver factors in Otindag Sandy Land from 2001 to 2020"
年份 | 因子 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TEM | PRE | WND | ELEV | SLP | ASP | SOIL | VGT | LUC | POP | SHEEP | |
2001—2005 | 0.09 | 0.54 | 0.53 | 0.49 | 0.08 | 0.04 | 0.25 | 0.08 | 0.14 | 0.05 | 0.74 |
2006—2010 | 0.12 | 0.49 | 0.50 | 0.42 | 0.09 | 0.04 | 0.25 | 0.07 | 0.14 | 0.02 | 0.60 |
2011—2015 | 0.16 | 0.54 | 0.53 | 0.47 | 0.08 | 0.04 | 0.24 | 0.08 | 0.13 | 0.04 | 0.64 |
2016—2020 | 0.20 | 0.57 | 0.54 | 0.49 | 0.09 | 0.03 | 0.25 | 0.08 | 0.13 | 0.08 | 0.62 |
Tab. 4
Area of actual and simulated NDVI of Otindag Sandy Land under different scenarios /km2"
年份 | 情景 | 情景名称 | 植被覆盖区分级 | ||||
---|---|---|---|---|---|---|---|
低度 | 较低 | 中等 | 较高 | 高度 | |||
2020 | - | - | 12034 | 10105 | 8531 | 5607 | 5469 |
2030(模拟) | 惯性发展情景 | 惯性发展 | 10527 | 9141 | 9976 | 6916 | 5187 |
气候变化情景 | 降水增多 | 7511 | 9141 | 9976 | 6794 | 8324 | |
降水降低 | 12305 | 10729 | 7992 | 5532 | 5188 | ||
风速提高 | 12758 | 10227 | 7990 | 5760 | 5011 | ||
风速降低 | 8933 | 9141 | 9976 | 6916 | 6780 | ||
经济优先情景 | 放牧压力增加 | 12750 | 10267 | 7927 | 5499 | 5303 | |
生态保护情景 | 放牧压力减少 | 7249 | 9141 | 9976 | 6916 | 8464 |
[1] | Mea. Millennium ecosystem assessment: Ecosystems and human well-being-synthesis[M]. Washington, DC: Island Press, 2005. |
[2] |
Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: Building a science for dryland development[J]. Science, 2007, 316(5826): 847-851.
doi: 10.1126/science.1131634 pmid: 17495163 |
[3] |
Huang J, Zhai J, Jiang T, et al. Analysis of future drought characteristics in China using the regional climate model CCLM[J]. Climate Dynamics, 2018, 50(1-2): 507-525.
doi: 10.1007/s00382-017-3623-z |
[4] |
Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2): 166-171.
doi: 10.1038/NCLIMATE2837 |
[5] |
Zhou D, Zhao X, Hu H, et al. Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China[J]. Landscape Ecology, 2015, 30(9): 1613-1626.
doi: 10.1007/s10980-015-0151-2 |
[6] | 王牧兰, 包玉海, 银山. 浑善达克沙地动态变化影响因素分析[J]. 干旱区资源与环境, 2004(增刊3): 44-47. |
[Wang Mulan, Bao Yuhai, Yinshan. Dynamic changes of the landscape structure of Hunshandake Sandy Land and analysis on its forming factors[J]. Journal of Arid Land Resources and Environment, 2004(Suppl. 3): 44-47.] | |
[7] |
Wang J, He T, Guo X, et al. Dynamic changes of sandy land in northwest of Beijing, China[J]. Environmental Monitoring and Assessment, 2006, 121(1-3): 109-125.
pmid: 16758285 |
[8] | 丁国栋, 蔡京艳, 王贤, 等. 浑善达克沙地沙漠化成因、过程及其防治对策研究——以内蒙古正蓝旗为例[J]. 北京林业大学学报, 2004(4): 15-19. |
[Ding Guodong, Cai Jingyan, Wang Xian, et al. Causes, process and counter measures of desertification in Hunshandake Sand Land: Taking Zhenglan Banner, Inner Mongolia as an example[J]. Journal of Beijing Forestry University, 2004(4): 15-19.] | |
[9] |
Zhao Y, Chi W, Kuang W, et al. Ecological and environmental consequences of ecological projects in the Beijing-Tianjin sand source region[J]. Ecological Indicators, 2020, 112: 106111, doi: 10.1016/j.ecolind.2020.106111.
doi: 10.1016/j.ecolind.2020.106111 |
[10] |
Wang H, Yao F, Zhu H, et al. Spatiotemporal variation of vegetation coverage and its response to climate factors and human activities in arid and semi-arid areas: Case study of the Otindag Sandy Land in China[J]. Sustainability, 2020, 12(12): 5214, doi: 10.3390/su12125214.
doi: 10.3390/su12125214 |
[11] | 同丽嘎, 宁小莉, 张靖, 等. 近30 a浑善达克沙地沙漠化时空演变特征及驱动机制研究[J]. 干旱区地理, 2021, 44(4): 992-1002. |
[Tong Liga, Ning Xiaoli, Zhang Jing, et al. Spatial-temporal variation and driving mechanism of desertification in Hunshandake (Otindag) Sandy Land in recent 30 years[J]. Arid Land Geography, 2021, 44(4): 992-1002.] | |
[12] | 姚雪玲, 李龙, 王锋, 等. 放牧方式对浑善达克沙地榆树疏林退化的影响[J]. 生态学报, 2020, 40(5): 1663-1671. |
[Yao Xueling, Li Long, Wang Feng, et al. Effects of grazing management on the degradation of Ulmus pumila open forest in Otindag Sandy Land[J]. Acta Ecologica Sinica, 2020, 40(5): 1663-1671.] | |
[13] |
王旭洋, 李玉霖, 连杰, 等. 半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义[J]. 中国沙漠, 2021, 41(1): 183-194.
doi: 10.7522/j.issn.1000-694X.2020.00089 |
[Wang Xuyang, Li Yulin, Lian Jie, et al. Relationship between vegetation coverage and climate change in semi-arid sandy land and the significance to ecological construction[J]. Journal of Desert Research, 2021, 41(1): 183-194.]
doi: 10.7522/j.issn.1000-694X.2020.00089 |
|
[14] | 陈臻琦, 张靖, 张贻龙, 等. 基于VSD的近20 a来浑善达克沙地生态脆弱性变化研究[J]. 干旱区研究, 2021, 38(5): 1464-1473. |
[Chen Zhenqi, Zhang Jing, Zhang Yilong, et al. Spatio-temporal patterns variation of ecological vulnerability in Otindag Sandy Land based on a vulnerability scoping diagram[J]. Arid Zone Research, 2021, 38(5): 1464-1473.] | |
[15] | 于娜, 赵媛媛, 丁国栋, 等. 基于生态足迹的中国四大沙地地区可持续评价[J]. 干旱区地理, 2018, 41(6): 1310-1320. |
[Yu Na, Zhao Yuanyuan, Ding Guodong, et al. Sustainability assessment in four sandy lands of China based on the ecological footprint model[J]. Arid Land Geography, 2018, 41(6): 1310-1320.] | |
[16] |
Burrell A L, Evans J P, Liu Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND)[J]. Remote Sensing of Environment, 2017, 197: 43-57.
doi: 10.1016/j.rse.2017.05.018 |
[17] | 李永利, 张存厚, 王英, 等. 浑善达克沙地地上净初级生产力动态及对气候变化的响应[J]. 草业科学, 2021, 38(1): 1-10. |
[Li Yongli, Zhang Cunhou, Wang Ying, et al. Dynamics of above-ground net primary production and its response to climate change in the Hunshandake sand[J]. Pratacultural Science, 2021, 38(1): 1-10.] | |
[18] |
Gou F, Liang W, Sun S, et al. Analysis of the desertification dynamics of sandy lands in northern China over the period 2000—2017[J]. Geocarto International, 2021, 36(17): 1938-1959.
doi: 10.1080/10106049.2019.1678677 |
[19] |
Kang W P, Liu S L, Chen X, et al. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China[J]. Journal of Environmental Management, 2022, 308: 114596, doi: org/10.1016/j.jenvman.2022.114596.
doi: org/10.1016/j.jenvman.2022.114596 |
[20] |
Ma W, Wang X, Zhou N, et al. Relative importance of climate factors and human activities in impacting vegetation dynamics during 2000—2015 in the Otindag Sandy Land, northern China[J]. Journal of Arid Land, 2017, 9(4): 558-567.
doi: 10.1007/s40333-017-0062-y |
[21] |
Zheng Y R, Xie Z X, Robert C, et al. Did climate drive ecosystem change and induce desertification in Otindag Sandy Land, China over the past 40 years?[J]. Journal of Arid Environments, 2006, 64(3): 523-541.
doi: 10.1016/j.jaridenv.2005.06.007 |
[22] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[23] |
孟琪, 武志涛, 杜自强, 等. 京津风沙源区不同分区植被覆盖度变化及归因分析[J]. 应用生态学报, 2021, 32(8): 2895-2905.
doi: 10.13287/j.1001-9332.202108.018 |
[Meng Qi, Wu Zhitao, Du Ziqiang, et al. Variation in fractional vegetation cover and its attribution analysis of different regions of Beijing-Tianjin sand source region, China[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2895-2905.]
doi: 10.13287/j.1001-9332.202108.018 |
|
[24] |
马永桃, 任孝宗, 胡慧芳, 等. 基于地理探测器的浑善达克沙地植被变化定量归因[J]. 中国沙漠, 2021, 41(4): 195-204.
doi: 10.7522/j.issn.1000-694X.2021.00066 |
[Ma Yongtao, Ren Xiaozong, Hu Huifang, et al. Vegetation dynamics and its driving force in Otindag Sandy Land based on geodetector[J]. Journal of Desert Research, 2021, 41(4): 195-204.]
doi: 10.7522/j.issn.1000-694X.2021.00066 |
|
[25] | 邓腾林, 宋一凡, 王明新, 等. 浑善达克沙地归一化植被指数动态变化及其对标准化降水蒸散发指数的时空响应关系[J]. 中国水利水电科学研究院学报, 2022, 20(3): 221-230. |
[Deng Tenglin, Song Yifan, Wang Mingxin, et al. Dynamic variations of normalized difference vegetation index variations in Otindag SandLand and its spatio-temporal responses to standardized precipitation evapotranspiration index[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(3): 221-230.] | |
[26] |
Dvorak M T, Armour K C, Frierson D M W, et al. Estimating the timing of geophysical commitment to 1.5 and 2.0 ℃ of global warming[J]. Nature Climate Change, 2022, 312, doi: 10.1038/s41558-022-01372-y.
doi: 10.1038/s41558-022-01372-y |
[27] |
齐丹卉, 杨洪晓, 卢琦, 等. 浑善达克沙地植物群落主要类型与特征[J]. 中国沙漠, 2021, 41(4): 23-33.
doi: 10.7522/j.issn.1000-694X.2021.00029 |
[Qi Danhui, Yang Hongxiao, Lu Qi, et al. Types and characteristics of plant communities in the Otingdag Sandy Land[J]. Journal of Desert Research, 2021, 41(4): 23-33.]
doi: 10.7522/j.issn.1000-694X.2021.00029 |
|
[28] |
Zhang J, Li X, Buyantuev A, et al. How do trade-offs and synergies between ecosystem services change in the long period? The case study of Uxin, Inner Mongolia, China[J]. Sustainability, 2019, 11(21): 6041, doi: 10.3390/SU11216041.
doi: 10.3390/SU11216041 |
[29] |
Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531.
doi: 10.1111/gcb.12945 pmid: 25858027 |
[30] |
Sun R, Chen S, Su H. Climate dynamics of the spatiotemporal changes of vegetation NDVI in northern China from 1982 to 2015[J]. Remote Sensing, 2021, 13(2): 187, doi: 10.3390/rs13020187.
doi: 10.3390/rs13020187 |
[31] |
史娜娜, 肖能文, 王琦, 等. 锡林郭勒植被NDVI时空变化及其驱动力定量分析[J]. 植物生态学报, 2019, 43(4): 331-341.
doi: 10.17521/cjpe.2018.0254 |
[Shi Na’na, Xiao Nengwen, Wang Qi, et al. Temporal and spatial variation of vegetation NDVI and its driving forces in Xilingol[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 331-341.]
doi: 10.17521/cjpe.2018.0254 |
|
[32] |
Hao R, Yu D, Liu Y, et al. Impacts of changes in climate and landscape pattern on ecosystem services[J]. Science of the Total Environment, 2017, 579: 718-728.
doi: 10.1016/j.scitotenv.2016.11.036 |
[33] |
Zheng K Y, Tan L S, Sun Y W, et al. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China[J]. Ecological Indicators, 2021, 126: 107648, doi: org/10.1016/j.ecolind.2021.107648.
doi: org/10.1016/j.ecolind.2021.107648 |
[34] |
Wang L, Yu D, Liu Z, et al. Study on NDVI changes in Weihe watershed based on CA-Markov model[J]. Geological Journal, 2018, 53: 435-441.
doi: 10.1002/gj.3259 |
[35] | Masson-Delmotte V, Zhai P, Pirani A, et al. Climate change 2021: The physical science basis[M]. Cambridge, UK and New York, USA: Cambridge University Press, 2021: 32. |
[36] | 安妮, 宁小莉, 海全胜, 等. 基于MODIS数据的近15年浑善达克沙地植被净初级生产力时空分布研究[J]. 干旱区资源与环境, 2020, 34(4): 168-175. |
[An Ni, Ning Xiaoli, Hai Quansheng, et al. Optical model for estimating the spatial and temporal distribution of vegetation net primary productivity in Hunshandake Sandy Land in recent 15 years[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 168-175.] | |
[37] |
Xie Y C, Sha Z Y. Quantitative analysis of driving factors of grassland degradation: A case study in Xilin River Basin, Inner Mongolia[J]. Scientific World Journal, 2012, 2012: 169724, doi: 10.1100/2012/169724.
doi: 10.1100/2012/169724 |
[38] |
Hao L, Sun G, Liu Y Q, et al. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China[J]. Landscape Ecology, 2014, 29: 1657-1673.
doi: 10.1007/s10980-014-0092-1 |
[39] |
Li A, Wu J, Huang J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia[J]. Landscape Ecology, 2012, 27(7): 969-982.
doi: 10.1007/s10980-012-9751-2 |
[40] |
Liu C, Melack J, Tian Y, et al. Detecting land degradation in eastern China grasslands with time series segmentation and residual trend analysis (TSS-RESTREND) and GIMMS NDVI3g data[J]. Remote Sensing, 2019, 11(9): 1014, doi: 10.3390/rs11091014.
doi: 10.3390/rs11091014 |
[41] | 陈宸, 井长青, 邢文渊, 等. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
[Jing Changqing, Xing Wenyuan, et al. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang[J]. Acta Prataculturae Sinica, 2021, 30(3): 1-14.] | |
[42] |
Gardiner B, Berry P, Moulia B. Wind impacts on plant growth, mechanics and damage[J]. Plant Sciences, 2016, 245: 94-118.
doi: 10.1016/j.plantsci.2016.01.006 |
[43] |
Wang X M, Lang L L, Yan P, et al. Aeolian processes and their effect on sandy desertification of the Qinghai-Tibet Plateau: A wind tunnel experiment[J]. Soil and Tillage Research, 2016, 158: 67-75.
doi: 10.1016/j.still.2015.12.004 |
[44] |
Zou X Y, Li J F, Cheng H, et al. Spatial variation of topsoil features in soil wind erosion areas of northern China[J]. Catena, 2018, 167: 429-439.
doi: 10.1016/j.catena.2018.05.022 |
[45] |
Zhang G, Xu X, Zhou C, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years[J]. Journal of Geographical Sciences, 2011, 21(4): 634-650.
doi: 10.1007/s11442-011-0869-y |
[46] | 邵艳莹, 吴秀芹, 张宇清, 等. 内蒙古地区植被覆盖变化及其对水热条件的响应[J]. 北京林业大学学报, 2018, 40(4): 33-42. |
[Shao Yanying, Wu Xiuqin, Zhang Yuqing, et al. Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(4): 33-42.] | |
[47] | 贺军奇, 魏燕, 高万德, 等. 毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2022, 45(5): 1523-1533. |
[He Junqi, Wei Yan, Gao Wande, et al. Temporal and spatial variation of vegetation NDVI and its response to climatic factors in the southeastern margin of Mu Us Sandy Land[J]. Arid Land Geography, 2022, 45(5): 1523-1533.] | |
[48] | Dong S K, Gao H W, Xu G C, et al. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China[J]. Environmental Conservation, 2007, 34(3): 246-254. |
[49] |
Zhang Y, Wang Q, Wang Z, et al. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau[J]. Science of the Total Environment, 2020, 698: 134304, doi: 10.1016/j.scitotenv.2019.134304.
doi: 10.1016/j.scitotenv.2019.134304 |
[1] | YANG Yu, SONG Futie, ZHANG Jie. Spatial structure characteristics and influencing factors of financial network of China based on geodetectors [J]. Arid Land Geography, 2023, 46(9): 1524-1535. |
[2] | ZHANG Gangdong, BAO Gang, HUANG Xiaojun, YUAN Zhihui, WEN Durina. Asymmetrical warming in winter and spring and its effect on start of growing season and spring NDVI in Mongolia [J]. Arid Land Geography, 2023, 46(8): 1238-1249. |
[3] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[4] | KONG Deming, HAO Lisha, XIA Siyou, LI Hongbo. Food security in the argo-pastoral ecotone of northern China from the perspective of grain yield [J]. Arid Land Geography, 2023, 46(5): 782-792. |
[5] | YANG Yuhuan,HE Jianxiong,ZHANG Xinhong,RUI Yang. Spatial differentiation characteristics and influencing texture of the coupling coordinated development of agro-culture-tourism in China [J]. Arid Land Geography, 2023, 46(3): 448-459. |
[6] | DENG Tiantian, GENG Guangpo, YANG Rui, ZHANG Bao. Temporal and spatial variation characteristics of high temperature and heat wave in the Weihe River Basin from 1980 to 2020 [J]. Arid Land Geography, 2023, 46(2): 211-221. |
[7] | Mihray MOYIDIN, Mamat SAWUT, LI Jinzhao. Extraction of cotton planting area based on Sentinel-2 time series data and phenological characteristics [J]. Arid Land Geography, 2022, 45(6): 1847-1859. |
[8] | HE Junqi,WEI Yan,GAO Wande,CHEN Yunfei,MA Yandong,LIU Xiuhua. Temporal and spatial variation of vegetation NDVI and its response to climatic factors in the southeastern margin of Mu Us Sandy Land [J]. Arid Land Geography, 2022, 45(5): 1523-1533. |
[9] | DAI Yunhao,GUAN Yao,ZHANG Qinkai,SUN Junjie,HE Xinghong. Remote sensing monitoring and temporal and spatial characteristics of soil salinization in Aral Reclamation Area [J]. Arid Land Geography, 2022, 45(4): 1176-1185. |
[10] | CHENG Danni,WANG Yingqi,CHENG Yongxiang,HUANG Jingfeng. Vegetation-water vapor-land surface temperature correlation analysis of typical deserts and oases in Xinjiang [J]. Arid Land Geography, 2022, 45(2): 456-466. |
[11] | REN Liqing. Spatiotemporal change and driving force of vegetation in Ebinur Lake Basin [J]. Arid Land Geography, 2022, 45(2): 467-477. |
[12] | SUN Lirong,ZHOU Dongmei,CEN Guozhang,MA Jing,DANG Rui,NI Fan,ZHANG Jun. Landscape ecological risk assessment and driving factors of the Shule River Basin based on the geographic detector model [J]. Arid Land Geography, 2021, 44(5): 1384-1395. |
[13] | ZHI Ying,LIU Shulin,KANG Wenping,GUO Zichen,FENG Kun. Morphological characteristics of Caragana shrub-coppice dune in Otindag Sandy Land [J]. Arid Land Geography, 2021, 44(5): 1438-1448. |
[14] | JIA Danyang,XIONG Zhenzhen,GAO Yan,ZHANG Jiehua,WANG Shuyi,ZHAO Yuanjie. Land use/land cover change and influencing factors in the Taitema Lake in the past 30 years [J]. Arid Land Geography, 2021, 44(4): 1022-1031. |
[15] | ZHU Shuzhen,HUANG Farong,LI Lanhai. Drought characteristics and its risk assessment across Pakistan [J]. Arid Land Geography, 2021, 44(4): 1058-1069. |
|