Arid Land Geography ›› 2022, Vol. 45 ›› Issue (5): 1370-1380.doi: 10.12118/j.issn.1000-6060.2021.599
• Climate Change • Previous Articles Next Articles
CAO Xiaoyun1,2(),XIAO Jianshe1,2(),HAO Xiaohua3,SHI Feifei1,2,4,LIU Zhiyuan1,2,LI Suyun1,2
Received:
2021-12-14
Revised:
2022-02-07
Online:
2022-09-25
Published:
2022-10-20
Contact:
Jianshe XIAO
E-mail:xiaoyun_cao@126.com;xiaojianshe@126.com
CAO Xiaoyun,XIAO Jianshe,HAO Xiaohua,SHI Feifei,LIU Zhiyuan,LI Suyun. Variation of snow cover days and topographic differentiation in Sanjiangyuan area from 2001 to 2020[J].Arid Land Geography, 2022, 45(5): 1370-1380.
[1] | 张欢, 邱玉宝, 郑照军, 等. 基于MODIS的青藏高原季节性积雪去云方法可行性比较研究[J]. 冰川冻土, 2016, 38(3): 714-724. |
[Zhang Huan, Qiu Yubao, Zheng Zhaojun, et al. Comparative study of the feasibility of cloud removal methods based on MODIS seasonal snow cover data over the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 714-724. ] | |
[2] | 易颖, 刘时银, 朱钰, 等. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26. |
[Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021, 44(1): 15-26. ] | |
[3] | 拉巴卓玛, 邱玉宝, 次旦巴桑, 等. 西藏高原MODIS每日积雪产品去云算法过程对比验证研究[J]. 冰川冻土, 2016, 38(1): 159-169. |
[Laba Zhuoma, Qiu Yubao, Cidan Basang, et al. The validation of MODIS daily snow-cover products after cloud removal in Tibet Autonomous Region[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 159-169. ] | |
[4] |
王建, 车涛, 李震, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-26.
doi: 10.11867/j.issn.1001-8166.2018.01.0012 |
[Wang Jian, Che Tao, Li Zhen, et al. Investigation on snow characteristics and their distribution in China[J]. Advances in Earth Science, 2018, 33(1): 12-26. ]
doi: 10.11867/j.issn.1001-8166.2018.01.0012 |
|
[5] | 李茜, 魏凤英, 雷向杰. 1961—2016年秦岭山区冷季积雪日数变化特征及其影响因子[J]. 冰川冻土, 2020, 42(3): 780-790. |
[Li Qian, Wei Fengying, Lei Xiangjie. The variation characteristics of snow days and its influencing factors in cold season in the Qinling Mountains from 1961 to 2016[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 780-790. ] | |
[6] | 陈鹏, 王勇, 张青, 等. 基于FY-3D/MERSI-II归一化积雪指数和MOD10A1的精度对比分析[J]. 干旱区地理, 2020, 43(2): 434-439. |
[Chen Peng, Wang Yong, Zhang Qing, et al. Comparison of normalized snow cover indices between FY-3D/MERSI-II and MODIS[J]. Arid Land Geography, 2020, 43(2): 434-439. ] | |
[7] | 曹晓云. 基于MODIS的青藏高原地表反照率时空变化研究[D]. 南京: 南京信息工程大学, 2018: 12-30. |
[Cao Xiaoyun. Temporal and spatial variation of surface albedo over Qinghai Xizang Plateau based on MODIS[D]. Nanjing: Nanjing University of Information Engineering, 2018: 12-30. ] | |
[8] | 靳铮, 游庆龙, 吴芳营, 等. 青藏高原三江源地区近60 a气候与极端气候变化特征分析[J]. 大气科学学报, 2020, 43(6): 1042-1055. |
[Jin Zheng, You Qinglong, Wu Fangying, et al. Changes of climate and climate extremes in the Three-Rivers Headwaters Region over the Tibetan Plateau during the past 60 years[J]. Journal of Atmospheric Science, 2020, 43(6): 1042-1055. ] | |
[9] |
Yao T D, Thompson L, Yang W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
doi: 10.1038/nclimate1580 |
[10] | 傅敏宁. 青藏高原气候变化响应对我国防灾减灾的挑战[J]. 中国减灾, 2021, 4(7): 46-49. |
[Fu Minning. The response of climate change in the Qinghai Tibet Plateau to the challenge of disaster prevention and reduction in China[J]. Disaster Reduction in China, 2021, 4(7): 46-49. ] | |
[11] |
刘晓琼, 吴泽洲, 刘彦随, 等. 1960—2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820.
doi: 10.11821/dlxb201909008 |
[Liu Xiaoqiong, Wu Zezhou, Liu Yansui, et al. Spatial-temporal characteristics of precipitation from 1960 to 2015 in the Three Rivers’ Headstream Region, Qinghai, China[J]. Acta Geographica Sinica, 2019, 74(9): 1803-1820. ]
doi: 10.11821/dlxb201909008 |
|
[12] |
Deng M S, Meng X H, Li Z G, et al. Responses of soil moisture to regional climate change over the Three Rivers Source Region on the Tibetan Plateau[J]. International Journal of Climatology, 2020, 40(4): 2403-2417.
doi: 10.1002/joc.6341 |
[13] |
Li S S, Yao Z J, Wang R, et al. Dryness/wetness pattern over the Three-River Headwater Region: Variation characteristic, causes, and drought risks[J]. International Journal of Climatology, 2020, 40(7): 3550-3566.
doi: 10.1002/joc.6413 |
[14] | 车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253. |
[Che Tao, Hao Xiaohua, Dai Liyun, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253. ] | |
[15] |
Zhong X Y, Zhang T J, Zheng L, et al. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012[J]. The Cryosphere, 2018, 12(1): 227-245.
doi: 10.5194/tc-12-227-2018 |
[16] | 白淑英, 吴奇, 史建桥, 等. 青藏高原积雪深度时空分布与地形的关系[J]. 国土资源遥感, 2015, 27(4): 171-178. |
[Bai Shuying, Wu Qi, Shi Jianqiao, et al. Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J]. Remote Sensing for Land & Resources, 2015, 27(4): 171-178. ] | |
[17] |
郭建平, 刘欢, 安林昌, 等. 2001—2012年青藏高原积雪覆盖率变化及地形影响[J]. 高原气象, 2016, 35(1): 24-33.
doi: 10.7522/j.issn.1000-0534.2014.00140 |
[Guo Jianping, Liu Huan, An Linchang, et al. Study on variation of snow cover and its orographic impact over Qinghai-Xizang Plateau during 2001—2012[J]. Plateau Meteorology, 2016, 35(1): 24-33. ]
doi: 10.7522/j.issn.1000-0534.2014.00140 |
|
[18] | 除多, 达娃, 拉巴卓玛, 等. 基于MODIS数据的青藏高原积雪时空分布特征分析[J]. 国土资源遥感, 2017, 29(2): 117-124. |
[Chu Duo, Da Wa, Laba Zhuoma, et al. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. Remote Sensing for Land & Resources, 2017, 29(2): 117-124. ] | |
[19] |
沈鎏澄, 吴涛, 游庆龙, 等. 青藏高原中东部积雪深度时空变化特征及其成因分析[J]. 冰川冻土, 2019, 41(5): 1150-1161.
doi: 10.7522/j.issn.1000-0240.2019.1100 |
[Shen Liucheng, Wu Tao, You Qinglong, et al. Analysis of the characteristics of spatial and temporal variations of snow depth and their causes over the central and eastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1150-1161. ]
doi: 10.7522/j.issn.1000-0240.2019.1100 |
|
[20] |
You Q L, Chen D L, Wu F Y, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349, doi: 10.1016/j.earscirev.2020.103349.
doi: 10.1016/j.earscirev.2020.103349 |
[21] |
Guo D L, Sun J Q, Yang K, et al. Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(15): 8511-8521.
doi: 10.1029/2019JD030666 |
[22] |
Guo D L, Pepin N, Yang K, et al. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau[J]. Science Bulletin, 2021, 66(11): 1146-1150.
doi: 10.1016/j.scib.2021.02.013 |
[23] |
Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment, 1995, 54(2): 127-140.
doi: 10.1016/0034-4257(95)00137-P |
[24] | 王宏伟, 黄春林, 郝晓华, 等. 北疆地区积雪时空变化的影响因素分析[J]. 冰川冻土, 2014, 36(3): 508-516. |
[Wang Hongwei, Huang Chunlin, Hao Xiaohua, et al. Analyses of the spatiotemporal variations of snow cover in north Xinjiang[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 508-516. ] | |
[25] | 赵文宇, 刘海隆, 王辉, 等. 基于MODIS积雪产品的天山年积雪日数空间分布特征研究[J]. 冰川冻土, 2016, 38(6): 1510-1517. |
[Zhao Wenyu, Liu Hailong, Wang Hui, et al. A study of spatial distribution of snow days in the Tianshan Mountains based on MODIS snow products[J]. Journal of Glaciology and Geocryology, 2016, 38(6): 1510-1517. ] | |
[26] |
Zhang H B, Zhang F, Zhang G Q, et al. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold[J]. Science of the Total Environment, 2019, 651(Pt2): 2712-2726.
doi: 10.1016/j.scitotenv.2018.10.128 |
[27] |
高扬, 郝晓华, 和栋材, 等. 基于不同土地覆盖类型NDSI阈值优化下的青藏高原积雪判别[J]. 冰川冻土, 2019, 41(5): 1162-1172.
doi: 10.7522/j.issn.1000-0240.2019.1155 |
[Gao Yang, Hao Xiaohua, He Dongcai, et al. Snow cover mapping algorithm in the Tibetan Plateau based on NDSI threshold optimization of different land cover types[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1162-1172. ]
doi: 10.7522/j.issn.1000-0240.2019.1155 |
|
[28] |
Zhao H Y, Hao X H, Wang J, et al. The spatial-spectral-environmental extraction endmember algorithm and application in the MODIS fractional snow cover retrieval[J]. Remote Sensing, 2020, 12(22): 3693, doi: 10.3390/rs12223693.
doi: 10.3390/rs12223693 |
[29] | Hao X H, Huang G H, Zheng Z J, et al. Development and validation of a new MODIS snow-cover-extent product over China[J]. Hydrology and Earth System Sciences. 2021-11-22. https://doi.org/10.5194/hess-2021-556. |
[30] | 刘志红, Li Lingtao, McVicar Tim R, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象, 2008, 34(2): 92-100. |
[Liu Zhihong, Li Lingtao, McVicar Tim R, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLINN[J]. Meteorological Monthly, 2008, 34(2): 92-100. ] | |
[31] | 黄嘉佑, 李庆祥. 气象数据统计分析方法[M]. 北京: 气象出版社, 2015: 35-38. |
[Huang Jiayou, Li Qingxiang. Statistical analysis method of meteorological data[M]. Beijing: Meteorological Publishing House, 2015: 35-38. ] | |
[32] |
黄葵, 卢毅敏, 魏征, 等. 土地利用和气候变化对海河流域蒸散发时空变化的影响[J]. 地球信息科学学报, 2019, 21(12): 1888-1902.
doi: 10.12082/dqxxkx.2019.190269 |
[Huang Kui, Lu Yimin, Wei Zheng, et al. Effects of land use and climate change on temporal and spatial changes of evapotranspiration in Haihe River Basin[J]. Journal of Geo-information Science, 2019, 21(12): 1888-1902. ]
doi: 10.12082/dqxxkx.2019.190269 |
|
[33] |
姜琪, 罗斯琼, 文小航, 等. 1961—2014年青藏高原积雪时空特征及其影响因子[J]. 高原气象, 2020, 39(1): 24-36.
doi: 10.7522/j.issn.1000-0534.2019.00022 |
[Jiang Qi, Luo Siqiong, Wen Xiaohang, et al. Temporal and spatial characteristics and influencing factors of snow cover on the Qinghai Tibet Plateau from 1961 to 2014[J]. Plateau Meteorology, 2020, 39(1): 24-36. ]
doi: 10.7522/j.issn.1000-0534.2019.00022 |
|
[34] |
Sun B, Wang H J. Interannual variation of the spring and summer precipitation over the Three River Source Region in China and the associated regimes[J]. Journal of Climate, 2018, 31(18): 7441-7457.
doi: 10.1175/JCLI-D-17-0680.1 |
[35] |
Sun B, Wang H J. Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system[J]. Climate Dynamics, 2018, 52(5-6): 3471-3488.
doi: 10.1007/s00382-018-4326-9 |
[1] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[2] | TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River [J]. Arid Land Geography, 2023, 46(9): 1432-1442. |
[3] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[4] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[5] | GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science [J]. Arid Land Geography, 2023, 46(7): 1176-1195. |
[6] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[7] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[8] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[9] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[10] | LIANG Pengfei,XIN Huijuan,LI Zongxing,ZHANG Baijuan,GUI Juan,DUAN Ran,NAN Fusen,DINGZENG Yangping,YANG Shengmei. Runoff variation characteristics and influencing factors in the Heihe River Basin in the Qilian Mountains [J]. Arid Land Geography, 2022, 45(5): 1460-1471. |
[11] | HU Keke,HE Jiancun,ZHAO Jian,SU Litan,ZHANG Yin. Ecological base flow in Niya River Basin under climate change [J]. Arid Land Geography, 2022, 45(5): 1472-1480. |
[12] | SU Yue,ZHANG Cunhou, Amuersana,LI Ke. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018 [J]. Arid Land Geography, 2022, 45(3): 684-694. |
[13] | HUANG Ying,YANG Jianling,LI Xin,CUI Yang,MA Yang,ZHANG Wen. Climate change characteristics and circulation anomaly causes of the first frost date in Ningxia based on ground temperature [J]. Arid Land Geography, 2022, 45(2): 359-369. |
[14] | WANG Yaqin,YANG Haimei,FAN Wenbo,XU Zhongyu,QIAO Changlu. Migration characteristics of wind erosion climate erosivity and its influencing factors in Xinjiang in recent 50 years [J]. Arid Land Geography, 2022, 45(2): 370-378. |
[15] | CHEN Yaning,LI Zhi,FANG Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia [J]. Arid Land Geography, 2022, 45(1): 1-8. |
|