Arid Land Geography ›› 2022, Vol. 45 ›› Issue (3): 867-878.doi: 10.12118/j.issn.1000-6060.2021.350
• Biology and Pedology • Previous Articles Next Articles
LUO Xinlan1(),SUN Yue1,LIU Limin1(),WANG Liwei1,YANG Litao2,GAO Xining1
Received:
2021-08-05
Revised:
2021-10-26
Online:
2022-05-25
Published:
2022-05-31
Contact:
Limin LIU
E-mail:luoxinlan@syau.edu.cn;liulimin1968@syau.edu.cn
LUO Xinlan,SUN Yue,LIU Limin,WANG Liwei,YANG Litao,GAO Xining. Simulation of response of potato growth and yield to drought stress in the single-cropping region in northern China: A case of Wuchuan County[J].Arid Land Geography, 2022, 45(3): 867-878.
Tab. 1
Soil profile properties under different soil layer depths in Wuchuan County"
土层/cm | 土壤pH值 | 容重/g·cm-3 | 田间持水量/mm·mm-1 | 饱和含水量/mm·mm-1 | 有效磷/mg·kg-1 | 有效钾/mg·kg-1 | 有机质/% |
---|---|---|---|---|---|---|---|
0~20 | 8.24 | 1.48 | 0.38 | 0.43 | 13.37 | 159.84 | 2.08 |
20~40 | 8.28 | 1.36 | 0.34 | 0.39 | 3.54 | 130.31 | 5.06 |
40~60 | 8.41 | 1.40 | 0.32 | 0.37 | 2.57 | 70.78 | 1.41 |
60~80 | 8.60 | 1.45 | 0.32 | 0.36 | 1.58 | 66.90 | 0.67 |
80~100 | 8.45 | 1.45 | 0.28 | 0.34 | 1.86 | 98.50 | 0.48 |
[1] | Long S P, Ort D R. More than taking the heat: Crops and global change[J]. Current Opinion in Plant Biology, 2010, 13(3): 241-248. |
[2] | 樊胜岳, 周宁, 刘文文. 走出马尔萨斯陷阱: 人口压力与沙漠化的关系[J]. 干旱区地理, 2020, 43(1): 218-226. |
[ Fan Shengyue, Zhou Ning, Liu Wenwen. Out of the Malthusian trap: The relationship between population pressure and desertification[J]. Arid Land Geography, 2020, 43(1): 218-226. ] | |
[3] | Food and Agriculture Organization of the United Nations FAOSTAT[EB/OL]. [2021-07-07]. http://www.fao.org/faostat/en/#data/QC. |
[4] |
Paul S, Farooq M, Bhattacharya S S, et al. Management strategies for sustainable yield of potato crop under high temperature[J]. Archives of Agronomy and Soil Science, 2016, 63(2): 276-287.
doi: 10.1080/03650340.2016.1204542 |
[5] | 刘鹏凌, 周云, 张文娟. 主粮化背景下中国马铃薯主产区生产效率及其影响因素研究[J]. 延边大学农学学报, 2021, 43(3): 93-100. |
[ Liu Pengling, Zhou Yun, Zhang Wenjuan. Study on production efficiency and its influencing factor of potato production areas in China under the background of main grain production[J]. Agricultural Science Journal of Yanbian University, 2021, 43(3): 93-100. ] | |
[6] |
Li J H, Cang Z M, Jiao F, et al. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage[J]. Journal of the Saudi Society of Agricultural Sciences, 2015, 16(1): 82-88.
doi: 10.1016/j.jssas.2015.03.001 |
[7] | 肖厚军, 孙锐锋, 何佳芳, 等. 不同水分条件对马铃薯耗水特性及产量的影响[J]. 贵州农业科学, 2011, 39(1): 73-75. |
[ Xiao Houjun, Sun Ruifeng, He Jiafang, et al. Effects of different water-supply on yield and water consumption characteristics of potato[J]. Guizhou Agricultural Sciences, 2011, 39(1): 73-75. ] | |
[8] | 云文丽, 苗百岭. 内蒙古马铃薯干旱等级指标研究[J]. 干旱地区农业研究, 2021, 39(2): 220-226. |
[ Yun Wenli, Miao Bailing. A study of drought index of potato in Inner Mongolia[J]. Agricultural Research in the Arid Areas, 2021, 39(2): 220-226. ] | |
[9] | 越昆, 金林雪, 李云鹏, 等. 内蒙古中部区干旱指数演变及其对马铃薯产量的影响[J]. 中国农业科技导报, 2021, 23(10): 161-170. |
[ Yue Kun, Jin Linxue, Li Yunpeng, et al. Temporal and spatial variation of drought index and its impact on potato yield in central Inner Mongolia[J]. Journal of Agricultural Science and Technology, 2021, 23(10): 161-170. ] | |
[10] | 抗艳红, 龚学臣, 赵海超, 等. 不同生育时期干旱胁迫对马铃薯生理生化指标的影响[J]. 中国农学通报, 2011, 27(15): 97-101. |
[ Kang Yanhong, Gong Xuechen, Zhao Haichao, et al. Physiological and biochemical response of potato under the drought stress in different growth period[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 97-101. ] | |
[11] | 韩德鹏, 杨蓓, 翁大成, 等. 干旱胁迫对冬播马铃薯现蕾期生理生化指标的影响[J]. 中国马铃薯, 2020, 34(2): 78-85. |
[ Han Depeng, Yang Bei, Weng Dacheng, et al. Effects of drought stress on physiological and biochemical indexes of winter sowing potato at bud flower stage[J]. Chinese Potato Journal, 2020, 34(2): 78-85. ] | |
[12] | 胡琦, 潘学标, 杨宁. 北方农牧交错带马铃薯沟垄集雨技术适宜性研究[J]. 干旱区地理, 2015, 38(3): 585-591. |
[ Hu Qi, Pan Xuebiao, Yang Ning. Suitability of rainwater harvesting technology for potato farmland ridge and furrow in northern agro-pastoral zone of China[J]. Arid Land Geography, 2015, 38(3): 585-591. ] | |
[13] |
Belanger G, Walsh J R, Richards J E, et al. Tuber growth and biomass partitioning of two potato cultivars grown under different N fertilization rates with and without irrigation[J]. American Journal of Potato Research, 2001, 78(2): 109-117.
doi: 10.1007/BF02874766 |
[14] | 王文佳, 冯浩. 国外主要作物模型研究进展与存在问题[J]. 节水灌溉, 2012(8): 63-68, 73. |
[ Wang Wenjia, Feng Hao. The progress and problems in the development of foreign crop models[J]. Water Saving Irrigation, 2012(8): 63-68, 73. ] | |
[15] |
McCown R L, Hammer G L, Hargreaves J N G, et al. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research[J]. Agricultural Systems, 1996, 50(3): 255-271.
doi: 10.1016/0308-521X(94)00055-V |
[16] |
Keating B A, Brown S, Carberry P, et al. An overview of APSIM: A model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3-4): 267-288.
doi: 10.1016/S1161-0301(02)00108-9 |
[17] | 李扬, 王靖, 唐建昭, 等. 农牧交错带马铃薯高产和水分高效利用的播期和品种选择[J]. 农业工程学报, 2020, 36(4): 118-126. |
[ Li Yang, Wang Jing, Tang Jianzhao, et al. Selecting planting date and cultivar for high yield and water use efficiency of potato across the agro-pastoral ecotone in north China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 118-126. ] | |
[18] | 李扬, 王靖, 唐建昭, 等. 播期和品种变化对马铃薯产量的耦合效应[J]. 中国生态农业学报, 2019, 27(2): 296-304. |
[ Li Yang, Wang Jing, Tang Jianzhao, et al. Coupling impacts of planting date and cultivar on potato yield[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 296-304. ] | |
[19] |
戴彤, 王靖, 赫迪, 等. APSIM模型在西南地区的适应性评价--以重庆冬小麦为例[J]. 应用生态学报, 2015, 26(4): 1237-1243.
pmid: 26259469 |
[ Dai Tong, Wang Jing, Hao Di, et al. Adaptability of APSIM model in southwestern China: A case study of winter wheat in Chongqing City[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1237-1243. ]
pmid: 26259469 |
|
[20] | 樊栋樑, 潘志华, 杨霏云, 等. APSIM-wheat模型在我国干旱半干旱地区的适应性评价--以内蒙古地区为例[J]. 干旱区资源与环境, 2018, 32(6): 99-105. |
[ Fan Dongliang, Pan Zhihua, Yang Feiyun, et al. Adaptability of APSIM-wheat model in arid and semi-arid regions: A case study in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2018, 32(6): 99-105. ] | |
[21] | 刘志娟, 杨晓光, 王静, 等. APSIM玉米模型在东北地区的适应性[J]. 作物学报, 2012, 38(4): 740-746. |
[ Liu Zhijuan, Yang Xiaoguang, Wang Jing, et al. Adaptability of APSIM maize model in northeast China[J]. Acta Meteorologica Sinica, 2012, 38(4): 740-746. ] | |
[22] | 康文钦, 杜磊, 于利峰, 等. 阴山北麓地区降水特性和作物需水耦合关系分析--以武川县为例[J]. 北方农业学报, 2020, 48(5): 83-89. |
[ Kang Wenqin, Du Lei, Yu Lifeng, et al. Analysis of the coupling relationship between precipitation characteristics and crop water demand in the northern area of Yinshan Mountain: Taking Wuchuan County as an example[J]. Journal of Northern Agriculture, 2020, 48(5): 83-89. ] | |
[23] | 高琳, 潘志华, 杨书运, 等. 覆膜对旱地马铃薯田土壤温湿度及温室气体排放的影响[J]. 干旱区资源与环境, 2017, 31(6): 136-141. |
[ Gao Lin, Pan Zhihua, Yang Shuyun, et al. Effect of different plastic film mulching methods on soil temperature-humidity and greenhouse gases emission in the rainfed potato field[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 136-141. ] | |
[24] | 王立为, 潘志华, 高西宁, 等. 不同施肥水平对旱地马铃薯水分利用效率的影响[J]. 中国农业大学学报, 2012, 17(2): 54-58. |
[ Wang Liwei, Pan Zhihua, Gao Xining, et al. Influence of different fertility levels water use efficiency of the potato in the dry land[J]. Journal of China Agricultural University, 2012, 17(2): 54-58. ] | |
[25] | 唐建昭. 北方农牧交错带马铃薯基于缩差和增效的种植管理模式研究[D]. 北京: 中国农业大学, 2018. |
[ Tang Jianzhao. A study on planting pattern of potato narrow yield gap and increase precipitation use efficiency in the agro-pastoral ecotone in north China[D]. Beijing: China Agricultural University, 2018. ] | |
[26] | 王立为. 旱地马铃薯田温室气体减排与增产协同机制和模式研究[D]. 北京: 中国农业大学, 2015. |
[ Wang Liwei. The coordination mechanism and pattern of greenhouse gas reduction and yield increase in potato field[D]. Beijing: China Agricultural University, 2015. ] | |
[27] | Brown H E, Huth N, Holzworth D. A potato model built using the APSIM plant net framework[C]// Chan F, Marinova D, Anderssen R S. 19th International Congress on Modeling and Simulation. Perth: Modelling and Simulation Society of Australia and New Zealand, 2011: 961-967. |
[28] | 王钧, 李广, 聂志刚, 等. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究[J]. 干旱区地理, 2021, 44(2): 494-506. |
[ Wang Jun, Li Guang, Nie Zhigang, et al. Simulation study of response of spring wheat yield to drought stress in the Loess Plateau of central Gansu[J]. Arid Land Geography, 2021, 44(2): 494-506. ] | |
[29] | 孙爽, 王春乙, 宋艳玲, 等. 我国北方一作区马铃薯高产稳产区分布特征[J]. 应用气象学报, 2021, 32(4): 385-396. |
[ Sun Shuang, Wang Chunyi, Song Yanling, et al. Distributions of high and stable yield for potato in the single-cropping region in northern China[J]. Journal of Applied Meteorological Science, 2021, 32(4): 385-396. ] | |
[30] |
Tang J Z, Wang J, Fang Q X, et al. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in north China[J]. European Journal of Agronomy, 2018, 98: 82-94.
doi: 10.1016/j.eja.2018.05.008 |
[31] | 陈瑞英, 蒙美莲, 梁海强, 等. 不同水氮条件下马铃薯产量和氮肥利用特性的研究[J]. 中国农学通报, 2012, 28(3): 196-201. |
[ Chen Ruiying, Meng Meilian, Liang Haiqiang, et al. Effects of different treatments of irrigation and fertilization on the yield and nitrogen utilization characteristic of potato[J]. Chinese Agricultural Science Bulletin, 2012, 28(3): 196-201. ] | |
[32] |
Aliche E B, Oortwijn M, Theeuwen T P J M, et al. Drought response in field grown potatoes and the interactions between canopy growth and yield[J]. Agricultural Water Management, 2018, 206: 20-30.
doi: 10.1016/j.agwat.2018.04.013 |
[33] |
Plich J, Boguszewska-Mańkowska D, Marczewski W. Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars[J]. Potato Research, 2020, 63(4): 463-477.
doi: 10.1007/s11540-020-09451-3 |
[34] | 龚学臣, 抗艳红, 赵海超, 等. 干旱胁迫下磷营养对马铃薯抗旱性的影响[J]. 东北农业大学学报, 2013, 44(4): 48-52. |
[ Gong Xuechen, Kang Yanhong, Zhao Haichao, et al. Effect of phosphorus nutrition on drought-resistance of potato under drought stress[J]. Journal of Northeast Agricultural University, 2013, 44(4): 48-52. ] | |
[35] | 尹智宇, 郭华春, 封永生, 等. 干旱胁迫下马铃薯生理研究进展[J]. 中国马铃薯, 2017, 31(4): 234-239. |
[ Yin Zhiyu, Guo Huachun, Feng Yongsheng, et al. Research progress of potato physiology under drought tolerance[J]. Chinese Potato Journal, 2017, 31(4): 234-239. ] | |
[36] | 王希群, 马履一, 贾忠奎, 等. 叶面积指数的研究和应用进展[J]. 生态学杂志, 2005, 24(5): 537-541. |
[ Wang Xiqun, Ma Lüyi, Jia Zhongkui, et al. Research and application advances in leaf area index (LAI)[J]. Chinese Journal of Ecology, 2005, 24(5): 537-541. ] | |
[37] | 秦永林. 不同灌溉模式下马铃薯的水肥效率及膜下滴灌的氮肥推荐[D]. 呼和浩特: 内蒙古农业大学, 2013. |
[ Qin Yonglin. Water and fertilizer use efficiencies of potato under different irrigation patterns and nitrogen recommendation of under-mulch-drip irrigated potato[D]. Hohhot: Inner Mongolia Agricultural University, 2013. ] | |
[38] |
Eiasu B K, Soundy P, Hammes P S. Response of potato (Solarium tuberosum) tuber yield components to gel-polymer soil amendments and irrigation regimes[J]. New Zealand Journal of Crop and Horticultural Science, 2007, 35(1): 25-31.
doi: 10.1080/01140670709510164 |
[39] |
Aliche E B, Theeuwen T P J M, Oortwijn M, et al. Carbon partitioning mechanisms in potato under drought stress[J]. Plant Physiology and Biochemistry, 2020, 146: 211-219.
doi: 10.1016/j.plaphy.2019.11.019 |
[40] |
Banik P, Zeng W, Tai H, et al. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes[J]. Environmental and Experimental Botany, 2016, 126: 76-89.
doi: 10.1016/j.envexpbot.2016.01.008 |
[41] | 抗艳红, 龚学臣, 赵海超, 等. 不同生育期干旱胁迫对马铃薯产量及品质的影响[J]. 安徽农业科学, 2010, 38(30): 16820-16822. |
[ Kang Yanhong, Gong Xuechen, Zhao Haichao, et al. Effect of the drought stress in different growth stages on potato yield and quality[J]. Journal of Anhui Agricultural Sciences, 2010, 38(30): 16820-16822. ] | |
[42] | 窦超银, 于景春, 丁秀琴. 干旱胁迫对辽西半干早区玉米生长和产量的影响[J]. 灌溉排水学报, 2013, 32(4): 84-87. |
[ Dou Chaoyin, Yu Jingchun, Ding Xiuqin. Effects of drought stress on the growth and yield of maize in semi-arid area of west Liaoning[J]. Journal of Irrigation and Drainage, 2013, 32(4): 84-87. ] | |
[43] | 张秋英, 李发东, 高克吕, 等. 水分胁迫对冬小麦光合特性及产量的影响[J]. 西北植物学报, 2015, 25(6): 1184-1190. |
[ Zhang Qiuying, Li Fadong, Gao Kelü, et al. Effect of water stress on the photosynthetic capabilities and yield of winter wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 25(6): 1184-1190. ] | |
[44] |
Obidiegwu J E, Bryan G J, Jones H G, et al. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement[J]. Frontiers in Plant Science, 2015, 6: 542, doi: 10.3389/fpls.2015.00542.
doi: 10.3389/fpls.2015.00542 pmid: 26257752 |
[1] | LIU Huancai,SHI Shuqi,LI Man,ZHANG Yanfang,HAN Li. Influencing factors of maize traits and yield per unit area in the middle reaches of Shule River Basin [J]. Arid Land Geography, 2023, 46(9): 1453-1466. |
[2] | KONG Deming, HAO Lisha, XIA Siyou, LI Hongbo. Food security in the argo-pastoral ecotone of northern China from the perspective of grain yield [J]. Arid Land Geography, 2023, 46(5): 782-792. |
[3] | XU Xintong,ZHU Li,LYU Xiaoyu,GUO Hao. Applicability evaluation of MSWEP product for meteorological drought monitoring in the Yellow River Basin [J]. Arid Land Geography, 2023, 46(3): 371-384. |
[4] | HE Xugang, Mamat SAWUT, SHENG Yanfang, LI Rongpeng. Remote sensing estimation of cotton water productivity in Ugan-Kuqa River Oasis based on Google Earth Engine [J]. Arid Land Geography, 2023, 46(10): 1632-1642. |
[5] | YE Jingyun,WU Bo,JIA Xiaohong,FEI Bingqiang,GAO Junliang,CHENG Long,PANG Yingjun,YAO Bin,KONG Deyong. Estimation of aboveground biomass of sparse desert vegetation based on remote sensing techniques in hyper-arid area [J]. Arid Land Geography, 2022, 45(2): 478-487. |
[6] | YIN Hanmin,Guli JIAPAER,YU Tao,Jeanine UMUHOZA,LI Xu. Wheat yield estimation with remote sensing in northern Kazakhstan [J]. Arid Land Geography, 2022, 45(2): 488-498. |
[7] | WANG Tieying,WANG Yangren,CHAI Junfang,GUO Wenjun. Effect of root water stress response function on soil water, crop growth dynamics and yield simulation [J]. Arid Land Geography, 2022, 45(2): 566-577. |
[8] | JIAO Ruoyu,SONG Xiaoyu,ZHAO Xinkai,LI Lanjun,FU Chong,ZHANG Zhixu,WANG Shaona. Runoff and sediment yield benefits and hydraulic characteristics of perennial ryegrass plantation canopy and root slope in the Loess Plateau [J]. Arid Land Geography, 2022, 45(1): 208-218. |
[9] | CAI Lu,WANG Linlin,LUO Zhuzhu,LI Lingling,NIU Yining,CAI Liqun,XIE Junhong. Meta-analysis of yield effects of fertilization on alfalfa in China [J]. Arid Land Geography, 2021, 44(3): 838-848. |
[10] | WANG Jun,LI Guang,NIE Zhigang,DONG Lixia,YAN Lijuan. Simulation study of response of spring wheat yield to drought stress in the Loess Plateau of central Gansu [J]. Arid Land Geography, 2021, 44(2): 494-506. |
[11] | ZHENG Xu, WEI Le-min, GUO Jian-jun, ZHOU Yan-yan, CHEN Guan-guang, YUE Dong-xia. Driving force analysis of water yield in inland river basins of arid areas based on geo-detectors: A case of the Shule River [J]. Arid Land Geography, 2020, 43(6): 1477-1485. |
[12] | WANG Qing-tao, ZHAO Chuan-yan, WANG Xiao-ping, HU Shan-shan, LIU Mei-yan, SHI Wen-yu, WANG Xiao-yu, SHAN Wen-rong. Simulating the biomass carbon distribution of young-and-middle aged Picea crassifolia forests based on FAREAST model along altitude gradients [J]. Arid Land Geography, 2020, 43(5): 1316-1326. |
[13] |
HUANG Xin, LIU Jian-hong, SHEN Ke-jian, LIU Yong-mei, WANG Lei.
Grassland yield change in Qinghai Province based on MODIS data [J]. Arid Land Geography, 2020, 43(3): 715-725. |
[14] | ZHANG Hua, ZHANG Yu-hong, ZHANG Gai-gai. Aboveground biomass estimation of the dominant species of vegetation in the Qingtu Lake at Minqin Qasis [J]. Arid Land Geography, 2020, 43(1): 201-210. |
[15] | LUO Qing-hui, XU Zhong-lin, XU Ze-yuan, LI Lu, CHANG Ya-peng, XU Xin-yi, SONG Xin-ni. Individual biomass allocation and its variation of Picea schrenkiana forests [J]. Arid Land Geography, 2019, 42(6): 1378-1386. |
|