收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2026, Vol. 49 ›› Issue (1): 80-93.doi: 10.12118/j.issn.1000-6060.2025.079 cstr: 32274.14.ALG2025079

• 地表过程研究 • 上一篇    下一篇

不同影响因素下盐结皮蒸发阻力定量模拟研究

李佳琳1,2,3(), 李新虎1,2,3(), 王弘超1,2,3, 崔萌萌2, 郭语博1,2,3, 靳浩东1,3, 任萧萧1,3   

  1. 1 中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2 新疆阿克苏绿洲农田生态系统国家野外科学观测研究站,新疆 阿克苏 843017
    3 中国科学院大学,北京 100049
  • 收稿日期:2025-02-18 修回日期:2025-05-07 出版日期:2026-01-25 发布日期:2026-01-18
  • 通讯作者: 李新虎(1981-),男,博士,研究员,主要从事土壤盐渍化与土壤水盐运动等方面的研究. E-mail: lixinhu@ms.xjb.ac.cn
  • 作者简介:李佳琳(2000-),女,硕士研究生,主要从事土壤盐渍化等方面的研究. E-mail: lijialin22@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42277314);天山英才培养计划项目(2022TSYCCX0008)

Quantitative modeling of evaporation resistance in salt crusts under varying influencing factors

LI Jialin1,2,3(), LI Xinhu1,2,3(), WANG Hongchao1,2,3, CUI Mengmeng2, GUO Yubo1,2,3, JIN Haodong1,3, REN Xiaoxiao1,3   

  1. 1 State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2 National Field Scientific Observation and Research Station of Aksu Oasis Farmland Ecosystem, Aksu 843017, Xinjiang, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-02-18 Revised:2025-05-07 Published:2026-01-25 Online:2026-01-18

摘要:

盐结皮是干旱区典型的地表结构,显著影响土壤-大气界面水分传输过程。盐结皮蒸发阻力是土壤水分蒸发过程中的一个关键控制参数,然而,目前关于不同影响因素下盐结皮蒸发阻力的定量分析仍不明确。为此,通过模拟试验与理论分析方法,动态监测及分析土壤粒径(细砂:0.10~0.25 mm;粗砂:0.50~0.85 mm)、辐射(200 W·m-2、500 W·m-2和800 W·m-2)、盐分浓度(5.0%和17.5% NaCl)、风速(3.5 m·s-1和8.0 m·s-1)、水力学联系(逐渐干燥和供水)以及演化时间等因素影响下的盐结皮形成及蒸发阻力变化过程。基于沙普利加性解释(SHAP)方法,量化了各因素的贡献并对其重要性进行了排序。结果表明:(1)盐结皮蒸发阻力随着演化时间的推移呈现出持续增长趋势。在试验结束时,DL3(5.0% NaCl、逐渐干燥、800 W·m-2辐射,细砂)处理下盐结皮蒸发阻力最大,达9.39×104 s·m-1;而在WH2(5.0% NaCl、供水、8.0 m·s-1风速,细砂)处理下则最小,为293.08 s·m-1。(2)各影响因素对盐结皮蒸发阻力的贡献排序为:水力学联系>辐射>演化时间>土壤粒径>盐分浓度>风速。其中,辐射对盐结皮蒸发阻力具有正向影响,土壤粒径对盐结皮蒸发阻力具有负向影响。研究结果将为盐结皮蒸发阻力的定量描述提供理论支持。

关键词: 盐结皮, 蒸发阻力, 影响因素, SHAP方法

Abstract:

Salt crusts are a typical surface structure in arid regions and significantly affect soil-atmosphere water transfer processes. The evaporation resistance of salt crusts is a key controlling parameter in the soil water-vapor evaporation process. However, quantitative understanding of salt crust evaporation resistance under varying influencing factors remains limited. Therefore, this study employs simulation experiments and theoretical analyses to dynamically monitor and analyze salt crust formation and the evolution of evaporation resistance under the influences of soil particle size (fine sand: 0.10-0.25 mm; coarse sand: 0.50-0.85 mm), radiation (200 W·m-2, 500 W·m-2, and 800 W·m-2), salt concentration (5.0% and 17.5% NaCl), wind speed (3.5 m·s-1 and 8.0 m·s-1), hydraulic conditions (with and without fixed groundwater), and evolution time. Using the Shapley additive explanation method, we quantified the contributions of the various factors and ranked their relative importance. The results were as follows: (1) Salt crust evaporation resistance increased continuously over time. At the end of the experiment, the maximum evaporation resistance (9.39×104 s·m-1) occurred under the DL3 treatment (5.0% NaCl, no fixed groundwater, 800 W·m-2 radiation, fine sand), whereas the minimum resistance (293.08 s·m-1) was observed under the WH2 treatment (5.0% NaCl, fixed groundwater, 8.0 m·s-1 wind speed, fine sand). (2) The contribution ranking of the influencing factors was: hydraulic condition>radiation>evolution time>soil particle size>salt concentration>wind speed. Among these factors, radiation exerted a significant positive effect, whereas soil particle size had a negative impact on salt crust evaporation resistance. These findings provide theoretical support for the quantitative characterization of salt crust evaporation resistance.

Key words: salt crust, evaporation resistance, influencing factors, SHAP method