收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2026, Vol. 49 ›› Issue (1): 176-185.doi: 10.12118/j.issn.1000-6060.2025.095 cstr: 32274.14.ALG2025095

• 区域发展 • 上一篇    下一篇

地级市尺度下中国物流企业空间格局演化特征及影响因素

戢晓峰1,2,3(), 李子歆1,2,3, 曹瑞1,2,3, 李武1,2,3, 陈方2,3,4   

  1. 1 昆明理工大学交通工程学院,云南 昆明 650504
    2 云南省现代物流工程研究中心,云南 昆明 650504
    3 云南综合交通发展与区域物流管理智库,云南 昆明 650504
    4 昆明理工大学马克思主义学院,云南 昆明 650504
  • 收稿日期:2025-02-27 修回日期:2025-05-06 出版日期:2026-01-25 发布日期:2026-01-18
  • 通讯作者: 陈方(1980-),女,硕士,副教授,主要从事社会地理研究. E-mail: ji-0098@163.com
  • 作者简介:戢晓峰(1982-),男,博士,教授,主要从事交通地理与区域发展研究. E-mail: yiluxinshi@sina.com
  • 基金资助:
    云南省哲学社会科学基金项目(QN202413);云南交投集团科技创新项目(YCIC-YF-2024-04);昆明理工大学哲学社会科学科研创新团队项目(CXTD2024007)

Spatial pattern evolution characteristics and influencing factors of logistics enterprises in China at prefecture-level city scale

JI Xiaofeng1,2,3(), LI Zixin1,2,3, CAO Rui1,2,3, LI Wu1,2,3, CHEN Fang2,3,4   

  1. 1 Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650504, Yunnan, China
    2 Yunnan Modern Logistics Engineering Research Center, Kunming 650504, Yunnan, China
    3 Yunnan Integrated Transport Development and Regional Logistics Management Think Tank, Kunming 650504, Yunnan, China
    4 School of Marxism, Kunming University of Science and Technology, Kunming 650504, Yunnan, China
  • Received:2025-02-27 Revised:2025-05-06 Published:2026-01-25 Online:2026-01-18

摘要:

物流企业在区域经济中发挥着至关重要的作用,其分布情况直接影响区域经济的资源配置和市场竞争力,研究地级市物流企业空间格局演化特征及影响因素,有助于揭示物流企业集聚的形成机制。基于2006—2023年中国地级市物流企业地理位置数据,运用核密度分析、标准差椭圆、平均最近邻、空间自相关等空间分析方法,获取地级市尺度下物流企业时空格局及演化特征,并使用多尺度地理加权回归模型分析影响物流企业空间格局的因素及其空间分异特征。结果表明:(1)中国物流企业空间分布始终保持集聚特征,其空间格局经历了“一核带动、多点集聚”转变为“多核”,再逐渐转变为“双核”的演化过程,且存在廊道扩散和邻近扩散效应。(2)物流企业发展存在显著的正向溢出效应,发展较快的城市能够带动周边城市的发展。欠发达城市受发达城市的“虹吸效应”影响,处于“虹吸潮”的低洼地带具有显著的负向溢出效应。(3)第三产业就业人数和进出口总额为物流企业空间格局的主要影响因素。其中,进出口总额、外资企业数量为全局影响因素;第三产业就业人数和人均GDP为局部影响因素。

关键词: 物流企业, 空间演化, 影响因素, 多尺度地理加权回归, 地级市, 产业集聚

Abstract:

Logistics enterprises play a crucial role in a regional economy, with their distribution directly affecting its resource allocation and market competitiveness. The study of the evolution characteristics of the spatial pattern of logistics enterprises in prefecture-level cities and their influencing factors can help reveal the formation mechanism of logistics enterprises’ agglomeration. Based on the geographic location data of logistics enterprises in prefecture-level cities in China from 2006 to 2023, we use spatial analysis methods, such as kernel density analysis, standard deviation ellipse, average nearest neighbor, and spatial autocorrelation, to obtain the spatiotemporal pattern and evolution characteristics of logistics enterprises at prefecture-level city scale. The factors affecting the spatial pattern of logistics enterprises and their spatial differentiation are analyzed using multi-scale geographically weighted regression models. The results reveal that (1) The spatial distribution of logistics enterprises in China has always maintained the agglomeration characteristics, and its spatial pattern has experienced the “one-core-driven, multi-point agglomeration” to “multiple cores” and then gradually to the “dual-core” evolutionary process, with corridor diffusion and neighborhood diffusion effects. (2) Logistics enterprise development has a significant positive spillover effect, as a faster development of a city can drive the development of neighboring cities. Underdeveloped cities around a developed city experiencing a “siphon effect” in the “siphon tide” of low-lying areas would experience a significant negative spillover effect. (3) The number of employments in the tertiary industry and the total amount of imports and exports are the main influencing factors of the spatial pattern of logistics enterprises. Moreover, the total amount of imports and exports and the number of foreign-funded enterprises are global influencing factors, while the number of employments in the tertiary industry and GDP per capita are local influencing factors.

Key words: logistics enterprises, spatial evolution, influencing factors, multi-scale geographically weighted regression, prefecture-level city, industrial agglomeration