收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (8): 1353-1362.doi: 10.12118/j.issn.1000-6060.2025.066 cstr: 32274.14.ALG2025066

• 气候与水文 • 上一篇    下一篇

水足迹视角下黄河流域可再生能源制氢节水潜力研究

李慧1(), 姚西龙2   

  1. 1.太原科技大学经济与管理学院,山西 太原 030024
    2.太原理工大学经济与管理学院,山西 太原 030024
  • 收稿日期:2025-02-13 修回日期:2025-04-11 出版日期:2025-08-25 发布日期:2025-08-21
  • 作者简介:李慧(1992-),女,博士,讲师,主要从事水资源管理、水-能耦合以及资源开发与利用研究. E-mail: 2023019@tyust.edu.cn
  • 基金资助:
    山西省基础研究计划青年项目(202403021212114);山西省哲学社会科学规划课题(2024QN109);山西省高等学校哲学社会科学研究项目(2024W090);山西省来晋优秀博士科研资助项目(W20242005);太原科技大学科研启动基金资助(W20232018);教育部人文社科青年项目(23YJC790213)

Water-saving potential of hydrogen production from renewable energy in Yellow River Basin from the perspective of water footprint

LI Hui1(), YAO Xilong2   

  1. 1. School of Economic and Management, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
    2. College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2025-02-13 Revised:2025-04-11 Published:2025-08-25 Online:2025-08-21

摘要: 科学量化并分析可再生能源制氢的水足迹及其节水潜力,对于黄河流域各省(区)氢能产业的高质量发展和水资源的可持续利用具有重要意义。基于全生命周期理论构建“自下而上”的制氢技术水足迹评价模型,分析比较可再生能源制氢和煤制氢的水足迹及其构成。聚焦于黄河流域各省(区),研究不同情景下可再生能源制氢的节水强度,同时,结合各省(区)电力结构的差异和水资源稀缺足迹的不同,利用可用水剩余量指标探究各省(区)可再生能源制氢替代煤制氢的节水潜力。结果表明:(1)黄河流域北部地区可再生能源制氢水资源稀缺足迹最大,尤其是西北地区,其中内蒙古光伏制氢和风电制氢的水资源稀缺足迹最大,分别为1167.7×106 m3和637.73×106 m3。(2)可再生能源制氢的节水强度表现出“西南高东北低”的特征,光伏制氢替代煤制氢和风电制氢替代煤制氢的平均节水强度分别为1.04 L·kg-1和31.29 L·kg-1。(3)内蒙古风电制氢节水潜力最大,其次是青海、甘肃和山西。青海光伏制氢节水潜力最大,其次是甘肃和四川。研究结果不仅为提升黄河流域水资源利用效率筑牢了根基,还为黄河流域各省(区)氢能产业的科学规划布局提供了重要指引。

关键词: 可再生能源, 氢能, 水足迹, 节水潜力, 黄河流域

Abstract:

Quantifying and assessing the water footprint and water-saving intensity of hydrogen production from renewable energy are essential for the sustainable development of the hydrogen energy industry and the efficient use of water resources in the provinces along the Yellow River. This study first establishes a “bottom-up” water footprint evaluation model for hydrogen production technology grounded in life cycle theory and analyzes and compares the water footprints and their components for hydrogen production from renewable energy versus coal. Second, the study examines the water-saving intensity of hydrogen production from renewable energy across different scenarios for each province in the Yellow River Basin. Finally, considering the variations in power structure and water scarcity footprints of each province, this study evaluates the water-saving potential of replacing coal-based hydrogen production with renewable energy sources by using the index of remaining available water. The findings reveal the following: (1) The water scarcity footprint is notably high in the northern regions along the Yellow River, particularly in the northwest. In Inner Mongolia, the water scarcity footprints of hydrogen production from photovoltaic and wind power are the largest, measuring 1167.7×106 m3 and 637.73×106 m3, respectively. (2) The water-saving intensity for hydrogen production from photovoltaic and wind power is also greatest in the west, with average values of 1.04 L·kg−1 and 31.29 L·kg−1, respectively. (3) Inner Mongolia exhibits the highest water-saving potential for hydrogen production from wind power, followed by Qinghai, Gansu, and Shanxi. For hydrogen production from photovoltaic power, Qinghai ranks highest in water-saving potential, followed by Gansu and Sichuan. These results provide a solid foundation for enhancing water resource utilization in the Yellow River Basin and offer critical guidance for the scientific planning and development of the hydrogen energy industry in each province of the region.

Key words: renewable energy, hydrogen energy, water footprint, water-saving potential, Yellow River Basin