Arid Land Geography ›› 2024, Vol. 47 ›› Issue (10): 1617-1627.doi: 10.12118/j.issn.1000-6060.2024.162
• The Third Xinjiang Scientific Expedition • Previous Articles Next Articles
LYU Wengai1,2,3,4(), JIANG Yuwei5, MA Xingyu1,2,3, LIU Lei6, XUE Jie1,2,3, ZHANG Bo1,2,3, HUANG Caibian1,2,3(
)
Received:
2024-03-12
Revised:
2024-05-20
Online:
2024-10-25
Published:
2024-11-27
Contact:
HUANG Caibian
E-mail:lvwengai20@mails.ucas.ac.cn;huangcaibian@ms.xjb.ac.cn
LYU Wengai, JIANG Yuwei, MA Xingyu, LIU Lei, XUE Jie, ZHANG Bo, HUANG Caibian. Chemical characteristics of surface water and groundwater in plain area of the Qargan River Basin on the north slope of Kunlun Mountains[J].Arid Land Geography, 2024, 47(10): 1617-1627.
Tab. 1
Chemical characteristic parameters of river water, channel water and groundwater"
类型 | 统计值 | K+/mg·L-1 | Na+/mg·L-1 | Ca2+/mg·L-1 | Mg2+/mg·L-1 | Cl-/mg·L-1 | SO42-/mg·L-1 | HCO3-/mg·L-1 |
---|---|---|---|---|---|---|---|---|
河水 | 最小值 | 6.07 | 60.92 | 45.19 | 22.93 | 76.50 | 95.86 | 97.57 |
最大值 | 25.21 | 452.85 | 124.38 | 88.67 | 498.72 | 377.50 | 375.39 | |
平均值 | 10.54 | 159.36 | 77.19 | 42.22 | 181.55 | 231.49 | 169.90 | |
标准差 | 6.71 | 132.66 | 26.23 | 22.54 | 144.18 | 87.76 | 93.45 | |
变异系数 | 0.64 | 0.83 | 0.34 | 0.53 | 0.79 | 0.38 | 0.55 | |
渠水 | 最小值 | 4.60 | 48.72 | 48.84 | 15.93 | 58.39 | 112.87 | 91.03 |
最大值 | 25.59 | 295.65 | 98.94 | 112.80 | 305.97 | 312.62 | 459.47 | |
平均值 | 11.00 | 156.20 | 78.28 | 52.07 | 177.97 | 250.03 | 199.32 | |
标准差 | 7.25 | 84.14 | 19.29 | 32.40 | 84.98 | 55.67 | 137.19 | |
变异系数 | 0.66 | 0.54 | 0.25 | 0.62 | 0.48 | 0.22 | 0.69 | |
地下水 | 最小值 | 6.85 | 82.00 | 46.31 | 25.23 | 55.76 | 51.64 | 34.73 |
最大值 | 35.70 | 590.66 | 293.12 | 182.51 | 845.24 | 1013.45 | 319.42 | |
平均值 | 17.02 | 266.24 | 143.72 | 82.03 | 325.34 | 444.36 | 162.33 | |
标准差 | 8.89 | 155.92 | 77.53 | 46.21 | 235.20 | 309.96 | 82.74 | |
变异系数 | 0.52 | 0.59 | 0.54 | 0.56 | 0.72 | 0.70 | 0.51 | |
类型 | 统计值 | NO3-/mg·L-1 | F-/mg·L-1 | TDS/mg·L-1 | pH | δD/‰ | δ18O/‰ | |
河水 | 最小值 | 1.45 | 0.70 | 492.33 | 7.87 | -72.70 | -11.36 | |
最大值 | 5.31 | 12.12 | 1987.02 | 8.26 | -47.40 | -6.05 | ||
平均值 | 4.02 | 2.72 | 929.28 | 8.10 | -60.96 | -9.20 | ||
标准差 | 1.27 | 2.68 | 471.47 | 0.12 | 8.49 | 1.58 | ||
变异系数 | 1.40 | 0.99 | 0.51 | 0.01 | 0.14 | 0.17 | ||
渠水 | 最小值 | 4.41 | 1.14 | 548.33 | 7.95 | -70.70 | -14.26 | |
最大值 | 5.28 | 10.02 | 1589.74 | 8.31 | -54.00 | -8.38 | ||
平均值 | 4.67 | 3.16 | 1004.33 | 8.11 | -62.13 | -10.38 | ||
标准差 | 0.29 | 2.36 | 361.13 | 0.10 | 5.59 | 1.53 | ||
变异系数 | 0.28 | 0.75 | 0.36 | 0.01 | 0.09 | 0.15 | ||
地下水 | 最小值 | 1.24 | 0.49 | 490.06 | 7.69 | -60.50 | -11.58 | |
最大值 | 66.41 | 6.98 | 3303.16 | 8.33 | -38.10 | -8.53 | ||
平均值 | 17.45 | 2.65 | 1649.49 | 7.98 | -55.39 | -9.87 | ||
标准差 | 18.18 | 1.95 | 848.16 | 0.17 | 6.26 | 0.75 | ||
变异系数 | 4.62 | 0.74 | 0.51 | 0.02 | 0.11 | 0.08 |
[1] |
周洪华, 杨玉海, 朱成刚, 等. 供需平衡视角下昆仑山北坡县域单元地表水资源开发利用潜力初探[J]. 干旱区地理, 2024, 47(7): 1106-1115.
doi: 10.12118/j.issn.1000-6060.2024.093 |
[Zhou Honghua, Yang Yuhai, Zhu Chenggang, et al. Development and utilization potential of surface water resources of the counties on the northern slope of Kunlun Mountains from the perspective of supply and demand balance[J]. Arid Land Geography, 2024, 47(7): 1106-1115.]
doi: 10.12118/j.issn.1000-6060.2024.093 |
|
[2] |
陈亚宁, 朱成刚, 李稚, 等. 昆仑山北坡区域高质量发展面临的问题、机遇与挑战[J]. 干旱区地理, 2024, 47(5): 733-740.
doi: 10.12118/j.issn.1000-6060.2024.097 |
[Chen Yaning, Zhu Chenggang, Li Zhi, et al. High-quality development in the northern slope of the Kunlun Mountains: Issues, opportunities and challenges[J]. Arid Land Geography, 2024, 47(5): 733-740.]
doi: 10.12118/j.issn.1000-6060.2024.097 |
|
[3] | May C, Lucke A, Stichler W, et al. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes(δ18O、δ2H)[J]. Journal of Hydrology, 2007, 334(1-2): 53-63. |
[4] | 王旭东, 李升, 郭新, 等. 基于同位素技术的且末车尔臣河流域地下水补给来源分析[J]. 中国农村水利水电, 2020(2): 23-28, 33. |
[Wang Xudong, Li Sheng, Guo Xin, et al. An analysis of the groundwater recharge source of Cherchen River Basin in Qianma County[J]. China Rural Water and Hydropower, 2020(2): 23-28, 33.] | |
[5] | Wang W R, Chen Y N, Chen Y P, et al. Groundwater dynamic influenced by intense anthropogenic activities in a dried-up river oasis of Central Asia[J]. Hydrology Research, 2022, 53(4): 532-546. |
[6] | Zheng L L, Jiang C L, Chen X, et al. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin[J]. Journal of Environmental Management, 2022, 312: 114933, doi: 10.1016/j.jenvman.2022.114933. |
[7] |
吉卫波, 赵银鑫, 虎博文, 等. 宁夏苦水河流域地表水与地下水转化关系研究[J]. 干旱区地理, 2023, 46(10): 1612-1621.
doi: 10.12118/j.issn.1000-6060.2023.012 |
[Ji Weibo, Zhao Yinxin, Hu Bowen, et al. Transformation relationship between surface water and groundwater in Kushui River Basin of Ningxia[J]. Arid Land Geography, 2023, 46(10): 1612-1621.]
doi: 10.12118/j.issn.1000-6060.2023.012 |
|
[8] | 雷米, 周金龙, 张杰, 等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J]. 环境科学, 2022, 43(4): 1873-1884. |
[Lei Mi, Zhou Jinlong, Zhang Jie, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang[J]. Environmental Science, 2022, 43(4): 1873-1884.] | |
[9] | Wang W H, Wang W R, Chen, Y N, et al. Water quality and interaction between groundwater and surface water impacted by agricultural activities in an oasis-desert region[J]. Journal of Hydrology, 2023, 617: 128937, doi: 10.1016/j.jhydrol.2022.128937. |
[10] | 李升, 余斌, 陈锋, 等. 皮山河绿洲带地下水水化学及同位素特征分析[J]. 干旱区资源与环境, 2021, 35(5): 116-122. |
[Li Sheng, Yu Bin, Chen Feng, et al. Analysis of hydrochemical and isotopic characteristics in Pishan River oasis zone[J]. Journal of Arid Land Resources and Environment, 2021, 35(5): 116-122.] | |
[11] | 宋晨, 马斌, 梁杏, 等. 玛纳斯河流域山前平原地下水水化学特征与补给来源[J]. 干旱区资源与环境, 2021, 35(1): 160-168. |
[Song Chen, Ma Bin, Liang Xing, et al. Hydrochemical characteristics and recharge of groundwater in piedmont plain in the Manas River Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 160-168.] | |
[12] | 王志丹. 车尔臣河地表水径流变化与水化学变化分析[J]. 地下水, 2016, 38(5): 122-136. |
[Wang Zhidan. Analysis of surface water runoff change and hydrochemistry change in Cherchen River[J]. Ground Water, 2016, 38(5): 122-136.] | |
[13] | 李军, 欧阳宏涛, 周金龙. 新疆车尔臣河流域绿洲带地下水咸化与污染主控因素[J]. 环境科学, 2024, 45(1): 207-217. |
[Li Jun, Ouyang Hongtao, Zhou Jinlong. Controlling factors of groundwater salinization and pollution in the oasis zone of the Cherchen River Basin of Xinjiang[J]. Environmental Science, 2024, 45(1): 207-217.] | |
[14] | 王凯. 新疆库尔勒地区地下水形成及赋存条件分析[J]. 地下水, 2016, 38(6): 253-254. |
[Wang Kai. Analysis of groundwater formation and occurrence conditions in Korla area, Xinjiang[J]. Ground Water, 2016, 38(6): 253-254.] | |
[15] | 樊自立, 徐海量, 张鹏, 等. 新疆车尔臣河及其水资源利用研究[J]. 干旱区研究, 2014, 31(1): 20-26. |
[Fan Zili, Xu Hailiang, Zhang Peng, et al. The Qarqan River in Xinjiang and its water resources utilization[J]. Arid Zone Research, 2014, 31(1): 20-26.] | |
[16] | Piper A M. A graphic procedure in the geochemical interpretationof water-analyses[J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928. |
[17] |
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
doi: 10.1126/science.170.3962.1088 pmid: 17777828 |
[18] |
丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
doi: 10.13866/j.azr.2022.03.16 |
[Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
doi: 10.13866/j.azr.2022.03.16 |
|
[19] |
孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
doi: 10.13745/j.esf.sf.2022.1.33 |
[Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.]
doi: 10.13745/j.esf.sf.2022.1.33 |
|
[20] |
李红阳, 陈天宇, 王圣杰, 等. 1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究[J]. 干旱区地理, 2024, 47(9): 1443-1450.
doi: 10.12118/j.issn.1000-6060.2024.107 |
[Li Hongyang, Chen Tianyu, Wang Shengjie, et al. Spatial and temporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021[J]. Arid Land Geography, 2024, 47(9): 1443-1450.]
doi: 10.12118/j.issn.1000-6060.2024.107 |
|
[21] |
Wang W R, Chen Y N, Wang W H, et al. Hydrochemical characteristics and evolution of groundwater in the dried-up river oasis of the Tarim Basin, Central Asia[J]. Journal of Arid Land, 2021, 13(10): 977-994.
doi: 10.1007/s40333-021-0086-1 |
[22] | Wang W R, Chen Y N, Wang W H, et al. Evolution characteristics of groundwater and its response to climate and land-cover changes in the oasis of dried-up river in Tarim Basin[J]. Journal of Hydrology, 2021, 594: 125644, doi: 10.1016/j.jhydrol.2020.125644. |
[23] | Lacson C F Z, Lu M C, Huang Y H. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management: An overview[J]. Journal of Cleaner Production, 2021, 280: 124236, doi: 10.1016/j.jclepro.2020.124236. |
[24] |
张勇军, 杨余辉, 胡义成, 等. 新疆喀什河流域水化学时空变化特征及灌溉适应性评价[J]. 干旱区地理, 2023, 46(4): 583-594.
doi: 10.12118/j.issn.1000-6060.2022.274 |
[Zhang Yongjun, Yang Yuhui, Hu Yicheng, et al. Temporal and spatial variation characteristics of hydrochemistry and irrigation adaptability evaluation in Kashi River Basin, Xinjiang[J]. Arid Land Geography, 2023, 46(4): 583-594.]
doi: 10.12118/j.issn.1000-6060.2022.274 |
|
[25] |
李小等, 常亮, 段瑞, 等. 和田河中下游流域地下水水化学特征及其演化规律[J]. 干旱区地理, 2024, 47(5): 753-761.
doi: 10.12118/j.issn.1000-6060.2023.481 |
[Li Xiaodeng, Chang Liang, Duan Rui, et al. Chemical characteristics and evolution of groundwater in the middle and lower reaches of Hotan River Basin[J]. Arid Land Geography, 2024, 47(5): 753-761.]
doi: 10.12118/j.issn.1000-6060.2023.481 |
|
[26] | 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389. |
[Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristicsand formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389.] | |
[27] |
朱成刚, 陈亚宁, 张明军, 等. 昆仑山北坡水资源科学考察初报[J]. 干旱区地理, 2024, 47(7): 1097-1105.
doi: 10.12118/j.issn.1000-6060.2024.117 |
[Zhu Chenggang, Chen Yaning, Zhang Mingjun, et al. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains[J]. Arid Land Geography, 2024, 47(7): 1097-1105.]
doi: 10.12118/j.issn.1000-6060.2024.117 |
|
[28] |
石玉东, 王圣杰, 张明军, 等. 昆仑山北坡地表水氢氧稳定同位素空间分布特征[J]. 干旱区地理, 2024, 47(7): 1127-1135.
doi: 10.12118/j.issn.1000-6060.2024.105 |
[Shi Yudong, Wang Shengjie, Zhang Mingjun, et al. Spatial distribution characteristics of stable hydrogen and oxygen isotopes in surface waters on the north slope of the Kunlun Mountains[J]. Arid Land Geography, 2024, 47(7): 1127-1135.]
doi: 10.12118/j.issn.1000-6060.2024.105 |
|
[29] |
Sun C J, Li X G, Chen Y N, et al. Spatial and temporal characteristics of stable isotopes in the Tarim River Basin[J]. Isotopes in Environmental and Health Studies, 2016, 52(3): 281-297.
doi: 10.1080/10256016.2016.1125350 pmid: 26862902 |
[30] | Cheng L P, Si B C, Wang Y P, et al. Groundwater recharge mechanisms on the Loess Plateau of China: New evidence for the significance of village ponds[J]. Agricultural Water Management, 2021, 257: 107148, doi: 10.1016/j.agwat.2021.107148. |
[31] | Zhang J, Zhou J L, Chen Y F, et al. Identifying the factors controlling surface water and groundwater chemical characteristics and irrigation suitability in the Yarkant River Basin, northwest China[J]. Environmental Research, 2023, 223: 115452, doi: 10.1016/j.envres.2023.115452. |
[32] | Louw P G B D, Essink G H P O, Stuyfzand P J, et al. Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, the Netherlands[J]. Journal of Hydrology, 2010, 394(3/4): 494-506. |
[1] | GONG Dongdong, GAO Fan, WU Bin, LIU Kun. Spatiotemporal change of groundwater drought in the plain area of Xinjiang based on GRACE and its response to meteorological drought [J]. Arid Land Geography, 2024, 47(9): 1496-1507. |
[2] | LI Xiaodeng, CHANG Liang, DUAN Rui, WANG Qian, YANG Zedong, ZHANG Qunhui, ZHANG Pengwei. Chemical characteristics and evolution of groundwater in the middle and lower reaches of Hotan River Basin [J]. Arid Land Geography, 2024, 47(5): 753-761. |
[3] | LI Shiyi, GUAN Quanli. Influence of farmers’ irrigation behavior goals on irrigation water efficiency: A case of Xayar County [J]. Arid Land Geography, 2024, 47(1): 48-57. |
[4] | LIU Jingming, DING Jianli, BAO Qingling, ZHANG Zipeng, JIANG Leipeng, QU Yi. Characteristics of groundwater in Ebinur Lake Basin using isotopes method [J]. Arid Land Geography, 2023, 46(2): 201-210. |
[5] | DENG Chun, JIANG Xiaohui, SUN Weifeng. Groundwater storage and population exposure in the Yellow River Basin based on GRACE data [J]. Arid Land Geography, 2022, 45(6): 1836-1846. |
[6] | WEI Shiyu,GUO Yuntong,CUI Yali,ZHANG Qiulan,SHAO Jingli. Dynamic characteristics of groundwater level and storage variables in Minqin from 1985 to 2016 [J]. Arid Land Geography, 2021, 44(5): 1272-1280. |
[7] | LI Jingxin,XU Erqi,ZHANG Hongqi. Accurate calculation of water resources carrying status in arid areas based on Google Earth Engine: A case study of Xinjiang Production and Construction Corps [J]. Arid Land Geography, 2021, 44(5): 1417-1426. |
[8] | HAO Shuai,LI Fadong,LI Yanhong,ZHU Nong,QIAO Yunfeng,TIAN Chao,YANG Han,FU Kai. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin [J]. Arid Land Geography, 2021, 44(4): 934-942. |
[9] | CHEN Yaning,Wumaierjiang Wubuli,Aikeremu Abula,CHENG Yong,CHEN Yapeng,HAO Xingming,ZHU Chenggang,WANG Yang. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years [J]. Arid Land Geography, 2021, 44(3): 605-611. |
[10] | ZHOU Honghua,CHEN Yapeng,YANG Yuhai,ZHU Chenggang. Effects of ecological water conveyance on the growth characteristics of Populus euphtatica in the lower reaches of Tarim River based on tree-rings [J]. Arid Land Geography, 2021, 44(3): 643-650. |
[11] | CHEN Yongjin,Aikeremu Abula,ZHANG Tianju,CHEN Yapeng,ZHU Chenggang,CHENG Yong,LIU Lu,LI Xiaoyang,ZHANG Qifei. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 651-658. |
[12] | DI Zhenhua,XIE Zhenghui,CHEN Yaning. Estimation of riparian groundwater table depth in the lower reaches of Tarim River under long-term water conveyance [J]. Arid Land Geography, 2021, 44(3): 659-669. |
[13] | WANG Wanrui,Aikeremu Abula,CHEN Yaning,ZHU Chenggang,CHEN Yapeng. Groundwater recharge during ecological water conveyance in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 670-680. |
[14] | HAO Haichao,HAO Xingming,CHENG Xiaoli,ZHANG Jingjing,FAN Xue,LI Yuanhang. Effects of ecological water conveyance on water use efficiency of desert riparian forest ecosystem in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 691-699. |
[15] | ZHANG Jingjing,HAO Haichao,HAO Xingming,FAN Xue,LI Yuanhang. Effects of ecological water conveyance on NPP of natural vegetation in the lower reaches of Tarim River [J]. Arid Land Geography, 2021, 44(3): 708-717. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 320
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|