Arid Land Geography ›› 2022, Vol. 45 ›› Issue (3): 774-785.doi: 10.12118/j.issn.1000-6060.2021.296
• Hydrology and Water Resources • Previous Articles Next Articles
PAN Zihao1(),YANG Shengtian1,LOU Hezhen1(),YU Jingjie2,3,WANG Zhongjing4,ZHANG Jun1
Received:
2021-06-29
Revised:
2021-09-09
Online:
2022-05-25
Published:
2022-05-31
Contact:
Hezhen LOU
E-mail:202031470004@mail.bnu.edu.cn;louhezhen@bnu.edu.cn
PAN Zihao,YANG Shengtian,LOU Hezhen,YU Jingjie,WANG Zhongjing,ZHANG Jun. Remote sensing monitoring of ecological water conveyance and benefits evaluation of agricultural water-saving in arid basin without observation station[J].Arid Land Geography, 2022, 45(3): 774-785.
Tab. 4
Results of remote sensing hydrological station of section 2"
日期 (年-月) | 遥感反演 河宽/m | 水深/m | 过流面积 /m2 | 流速 /m·s-1 |
---|---|---|---|---|
2020-01 | - | - | - | - |
2020-02 | - | - | - | - |
2020-03 | 36.2 | 0.66 | 21.79 | 0.80 |
2020-04 | 35.4 | 0.54 | 17.62 | 0.70 |
2020-05 | 35.7 | 0.59 | 19.16 | 0.74 |
2020-06 | 35.7 | 0.59 | 19.16 | 0.74 |
2020-07 | 33.0 | 0.28 | 8.51 | 0.45 |
2020-08 | 33.5 | 0.32 | 10.02 | 0.50 |
2020-09 | 35.8 | 0.61 | 19.79 | 0.75 |
2020-10 | 36.5 | 0.71 | 23.56 | 0.83 |
Tab. 5
Balance relationship between ecological water conveyance and agricultural water-saving"
年份 | 1号断面水量/108 m3 | 耕地蒸散发减少量 | 植被蒸散发变化量 | |||
---|---|---|---|---|---|---|
数值/108 m3 | 百分比/% | 数值/108 m3 | 百分比/% | |||
2010 | - | 0.00 | - | - | - | |
2011 | - | 0.06 | - | 0.08 | - | |
2012 | - | -0.13 | - | 0.18 | - | |
2013 | - | 0.28 | - | 0.20 | - | |
2014 | - | 0.00 | - | 0.24 | - | |
2015 | - | 0.63 | - | 0.30 | - | |
2016 | 1.02 | 0.71 | 69.49 | 0.32 | 31.43 | |
2017 | 2.46 | 0.38 | 15.31 | 0.35 | 14.26 | |
2018 | 2.52 | 0.48 | 19.05 | 0.31 | 12.48 | |
2019 | 2.68 | 0.37 | 13.90 | 0.59 | 21.87 | |
2020 | 2.33 | 0.35 | 15.09 | 0.59 | 25.26 |
[1] | Zhang Z, Hu H P, Tian F Q, et al. Groundwater dynamics under water saving irrigation and implications for sustainable water management in an oasis: Tarim River Basin of western China[J]. Hydrology and Earth System Sciences Discussions, 2014, 18(10): 3951-3967. |
[2] | 庞爱萍, 易雨君, 李春晖. 基于生态需水保障的农业用水安全评价--以山东省引黄灌区为例[J]. 生态学报, 2021, 41(5): 1907-1920. |
[ Pang Aiping, Yi Yujun, Li Chunhui. Evaluation of agricultural water-use security with ecological water demand as a priority: A case study of the Yellow River estuary in Shandong Province[J]. Acta Ecologica Sinica, 2021, 41(5): 1907-1920. ] | |
[3] |
Zhang Y, Zhu G F, Ma H Y, et al. Effects of ecological water conveyance on the hydrochemistry of a terminal lake in an inland river: A case study of Qingtu Lake in the Shiyang River Basin[J]. Water, 2019, 11(8): 1673, doi: 10.3390/w11081673.
doi: 10.3390/w11081673 |
[4] | 康绍忠, 许迪. 我国现代农业节水高新技术发展战略的思考[J]. 中国农村水利水电, 2001(10): 25-29. |
[ Kang Shaozhong, Xu Di. Reflection on high-tech development strategies for water-saving of modern agriculture in China[J]. China Rural Water and Hydropower, 2001(10): 25-29. ] | |
[5] |
Huang F, Chunyu X Z, Zhang D R, et al. A framework to assess the impact of ecological water conveyance on groundwater-dependent terrestrial ecosystems in arid inland river basins[J]. Science of the Total Environment, 2020, 709: 136155, doi: 10.1016/j.scitotenv.2019.136155.
doi: 10.1016/j.scitotenv.2019.136155 |
[6] |
Hao X M, Li W H. Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China[J]. Environmental Monitoring and Assessment, 2014, 186(11): 7605-7616.
doi: 10.1007/s10661-014-3952-x |
[7] |
Liu G L, Kurban A, Duan H M, et al. Desert riparian forest colonization in the lower reaches of Tarim River based on remote sensing analysis[J]. Environmental Earth Sciences, 2014, 71(10): 4579-4589.
doi: 10.1007/s12665-013-2850-9 |
[8] |
Peng S H, Chen X, Qian J, et al. Spatial pattern of Populus euphratica forest change as affected by water conveyance in the lower Tarim River[J]. Forests, 2014, 5(1): 134-152.
doi: 10.3390/f5010134 |
[9] |
Yang F, Xue L, Wei G, et al. Study on the dominant causes of streamflow alteration and effects of the current water diversion in the Tarim River Basin, China[J]. Hydrological Processes, 2018, 32(22): 3391-3401.
doi: 10.1002/hyp.13268 |
[10] |
Zhang S H, Ye Z X, Chen Y N, et al. Vegetation responses to an ecological water conveyance project in the lower reaches of the Heihe River Basin[J]. Ecohydrology, 2017, 10(6): e1866, doi: 10.1002/eco.1866.
doi: 10.1002/eco.1866 |
[11] | Shen Q, Gao G Y, Lu Y H, et al. River flow is critical for vegetation dynamics: Lessons from multi-scale analysis in a hyper-arid endorheic basin[J]. Science of the Total Environment, 2017, 603: 290-298. |
[12] |
Wang X Y, Peng S Z, Ling H B, et al. Do ecosystem service value increase and environmental quality improve due to large-scale ecological water conveyance in an arid region of China?[J]. Sustainability, 2019, 11(23): 6586, doi: 10.3390/su11236586.
doi: 10.3390/su11236586 |
[13] |
Liao S M, Xue L Q, Dong Z C, et al. Cumulative ecohydrological response to hydrological processes in arid basins[J]. Ecological Indicators, 2020, 111: 106005, doi: 10.1016/j.ecolind.2019.106005.
doi: 10.1016/j.ecolind.2019.106005 |
[14] | 董志玲, 徐先英, 金红喜, 等. 生态输水对石羊河尾闾湖区植被的影响[J]. 干旱区资源与环境, 2015, 29(7): 101-106. |
[ Dong Zhiling, Xu Xianying, Jin Hongxi, et al. The impact of eco-water transportation to the vegetation in tail lake of Shiyang River[J]. Journal of Arid Land Resources and Environment, 2015, 29(7): 101-106. ] | |
[15] | 姚增福, 李全新. 节水农业综合效益价值差异评估--基于甘肃省数据研究[J]. 华东经济管理, 2014, 28(7): 81-85. |
[ Yao Zengfu, Li Quanxin. An evaluation on the value discrepancies of water-saving agriculture comprehensive benefits: Based on the data of Gansu Province[J]. East China Economic Management, 2014, 28(7): 81-85. ] | |
[16] | 田浪, 刘永强, 王珍, 等. 基于物元可拓模型的灌区水资源综合效益评价[J]. 排灌机械工程学报, 2016, 34(4): 351-356. |
[ Tian Lang, Liu Yongqiang, Wang Zhen, et al. Comprehensive benefit evaluation of water resources in irrigation district based on matter element extension model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(4): 351-356. ] | |
[17] | 高金花, 高晓珊, 廉冀宁, 等. 基于AHP-熵权法的农业节水技术综合效益评价[J]. 农机化研究, 2019, 41(12): 58-63. |
[ Gao Jinhua, Gao Xiaoshan, Lian Jining,et al. Comprehensive benefit evaluation of agricultural water-saving technology based on AHP-entropy weight method[J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 58-63. ] | |
[18] | 籍欢欢, 胡振华, 雷波, 等. 基于多目标评价及Topsis方法的节水农业综合效益评价--以黑龙江和平灌区为例[J]. 节水灌溉, 2019(4): 41-45. |
[ Ji Huanhuan, Hu Zhenhua, Lei Bo, et al. Comprehensive benefit evaluation of water-saving agriculture based on multi-objective evaluation and topsis method: Taking Heilongjiang Peace Irrigation District as an example[J]. Water Saving Irrigation, 2019(4): 41-45. ] | |
[19] |
Razavi T, Coulibaly P. Streamflow prediction in ngauged basins: Review of regionalization methods[J]. Journal of Hydrologic Engineering, 2013, 18(8): 958-975.
doi: 10.1061/(ASCE)HE.1943-5584.0000690 |
[20] |
Sivapalan M, Takeuchi K, Franks S W, et al. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences[J]. Hydrological Sciences Journal, 2003, 48(6): 857-880.
doi: 10.1623/hysj.48.6.857.51421 |
[21] |
Garambois P A, Monnier J. Inference of effective river properties from remotely sensed observations of water surface[J]. Advances in Water Resources, 2015, 79: 103-120.
doi: 10.1016/j.advwatres.2015.02.007 |
[22] |
Wang S S, Zhou F Q, Russell H A J. Estimating snow mass and peak river flows for the Mackenzie River Basin using GRACE satellite observations[J]. Remote Sensing, 2017, 9(3): 256, doi: 10. 3390/rs9030256.
doi: 10. 3390/rs9030256 |
[23] |
Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4788-4791.
doi: 10.1073/pnas.1317606111 pmid: 24639551 |
[24] |
Zhao C S, Zhang C B, Yang S T, et al. Calculating e-flow using UAV and ground monitoring[J]. Journal of Hydrology, 2017, 552: 351-365.
doi: 10.1016/j.jhydrol.2017.06.047 |
[25] |
Yang S T, Wang J, Wang P F, et al. Low altitude unmanned aerial vehicles (UAVs) and satellite remote sensing are used to calculated river discharge attenuation coefficients of ungauged catchments in arid desert[J]. Water, 2019, 11(12): 2633, doi: 10.3390/w111 22633.
doi: 10.3390/w111 22633 |
[26] | 张纯斌, 杨胜天, 赵长森, 等. 小型消费级无人机地形数据精度验证[J]. 遥感学报, 2018, 22(1): 185-195. |
[ Zhang Chunbin, Yang Shengtian, Zhao Changsen, et al. Topographic data accuracy verification of small consumer UAV[J]. Journal of Remote Sensing, 2018, 22(1): 185-195. ] | |
[27] |
Yang S T, Wang P F, Lou H Z, et al. Estimating river discharges in ungauged catchments using the slope-area method and unmanned aerial vehicle[J]. Water, 2019, 11(11): 2361, doi: 10.3390/w1111 2361.
doi: 10.3390/w1111 2361 |
[28] |
Lou H Z, Wang P F, Yang S T, et al. Combining and comparing an unmanned aerial vehicle and multiple remote sensing satellites to calculate long-term river discharge in an ungauged water source region on the Tibetan Plateau[J]. Remote Sensing, 2020, 12(13): 2155, doi: 10.3390/rs12132155.
doi: 10.3390/rs12132155 |
[29] | Wang P F, Yang S T, Wang J, et al. Discharge estimation with hydraulic geometry using unmanned aerial vehicle and remote sensing[J]. Journal of Hydraulic Engineering, 2020, 51(4): 492-504. |
[30] |
Yang S T, Li C J, Lou H Z, et al. Performance of an unmanned aerial vehicle (UAV) in calculating the flood peak discharge of ephemeral rivers combined with the incipient motion of moving stones in arid ungauged regions[J]. Remote Sensing, 2020, 12(10): 1610, doi: 10.3390/rs12101610.
doi: 10.3390/rs12101610 |
[31] | 宁亚洲, 张福平, 冯起, 等. 基于SEBAL模型的疏勒河流域蒸散发估算与灌溉效率评价[J]. 干旱区地理, 2020, 43(4): 928-938. |
[ Ning Yazhou, Zhang Fuping, Feng Qi, et al. Estimation of evapotranspiration in Shule River Basin based on SEBAL model and evaluation on irrigation efficiency[J]. Arid Land Geography, 2020, 43(4): 928-938. ] | |
[32] | 王合创, 徐宝山, 南洋, 等. 疏勒河流域敦煌生态输水问题研究[J]. 水利规划与设计, 2020, 5(5): 38-43. |
[ Wang Hechuang, Xu Baoshan, Nan Yang, et al. Study on Dunhuang ecological water conveyance in Shule River Basin[J]. Water Resources Planning and Design, 2020, 5(5): 38-43. ] | |
[33] | 岳东霞, 陈冠光, 朱敏翔, 等. 近20年疏勒河流域生态承载力和生态需水研究[J]. 生态学报, 2019, 39(14): 5178-5187. |
[ Yue Dongxia, Chen Guanguang, Zhu Minxiang, et al. Biocapacity and ecological water demand in Shule River Basin over the past 20 years[J]. Acta Ecologica Sinica, 2019, 39(14): 5178-5187. ] | |
[34] | 岳东霞, 苗俊霞, 朱敏翔, 等. 疏勒河流域陆地水储量与植被指数的时空耦合关系[J]. 生态学报, 2019, 39(14): 5268-5278. |
[ Yue Dongxia, Miao Junxia, Zhu Minxiang, et al. Spatio-temporal coupling between terrestrial water storage and vegetation index in Shule River Basin[J]. Acta Ecologica Sinica, 2019, 39(14): 5268-5278. ] | |
[35] |
王希义, 彭淑贞, 徐海量, 等. 大型输水工程的生态效益与社会经济效益评价--以塔里木河下游为例[J]. 地理科学, 2020, 40(2): 308-314.
doi: 10.13249/j.cnki.sgs.2020.02.016 |
[ Wang Xiyi, Peng Shuzhen, Xu Hailiang, et al. Evaluation of ecological and social-economic benefits of large water conveyance projects: A case study on the lower reaches of the Tarim River[J]. Scientia Geographica Sinica, 2020, 40(2): 308-314. ]
doi: 10.13249/j.cnki.sgs.2020.02.016 |
|
[36] | 金荣. 双塔灌区2019年农田灌溉水有效利用系数测算分析[J]. 地下水, 2021, 43(3): 104, 168. |
[ Jin Rong. Calculation and analysis of effective utilization coefficient of farmland irrigation water in Shuangta irrigation area in 2019[J]. Ground Water, 2021, 43(3): 104, 168. ] | |
[37] | 张彦武. 疏勒河的变迁对敦煌西湖湿地的影响分析[D]. 北京: 清华大学, 2016. |
Zhang Yanwu. Analysis of the influence of the Shule River changes on West Lake wetland at the Dunhuang City[D]. Beijing: Tsinghua University, 2016. ] | |
[38] | 曾有孝, 周毅. 甘肃省疏勒河流域尾闾生态补水工程措施研究[J]. 人民黄河, 2018, 40(11): 88-91. |
[ Zeng Youxiao, Zhou Yi. Study on measures of ecological replenishment engineering at the tail of Shule River Basin in Gansu Province[J]. Yellow River, 2018, 40(11): 88-91. ] | |
[39] | 孙栋元, 齐广平, 马彦麟, 等. 疏勒河干流径流变化特征研究[J]. 干旱区地理, 2020, 43(3): 557-567. |
[ Sun Dongyuan, Qi Guangping, Ma Yanlin, et al. Variation characteristics of runoff in the mainstream of Shule River[J]. Arid Land Geography, 2020, 43(3): 557-567. ] |
|