Arid Land Geography ›› 2023, Vol. 46 ›› Issue (3): 360-370.doi: 10.12118/j.issn.1000-6060.2022.307
• Climatology and Hydrology • Previous Articles Next Articles
REN Taotao(),LI Shuangshuang,DUAN Keqin(
),HE Jinping
Received:
2022-06-22
Revised:
2022-08-23
Online:
2023-03-25
Published:
2023-03-31
Contact:
Keqin DUAN
E-mail:r1372841563@163.com;kqduan@snnu.edu.cn
REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau[J].Arid Land Geography, 2023, 46(3): 360-370.
Tab. 1
Indices of ocean-atmosphere circulation"
序号 | 海气环流 | 定义 |
---|---|---|
1 | NINO 1+2区 | 10°S~0°、90°~80°W区域,海表温度距平的平均值 |
2 | NINO 3区 | 5°S~5°N、150°~90°W区域,海表温度距平的平均值 |
3 | NINO 4区 | 5°S~5°N、160°E~150°W区域,海表温度距平的平均值 |
4 | NINO 3.4区 | 5°S~5°N、170°~120°W区域,海表温度距平的平均值 |
5 | NINO W区 | 0°~10°N、140°~180°E区域,海表温度距平的平均值 |
6 | NINO C区 | 10°S~0°、180°~90°W区域,海表温度距平的平均值 |
7 | NINO A区 | 25°~35°N、130°~150°E区域,海表温度距平的平均值 |
8 | NINO B区 | 0°~10°N、50°~90°E区域,海表温度距平的平均值 |
9 | NINO Z区 | NINO 1+2、NINO 3和NINO 4区海表温度距平的面积加权平均 |
10 | 大西洋多年代际振荡指数 | 0°~70°N、80°W~0°区域,海表温度距平的平均值 |
11 | 大西洋海温 三极子指数 | 0°~60°N、80°W~0°区域,海表温度距平经验正交函数分解第1模态作为投影模态,月海温距平场去除全球海温增暖影响后,对该模态投影系数的标准化序列 |
12 | 青藏高原南部气压指数 | 500 hPa高度场,25°~35°N、80°~100°E区域,格点位势高度与5000 gpm之差乘以格点面积的累积值 |
13 | 青藏高原北部气压指数 | 500 hPa高度场,30°~40°N、75°~105°E区域,格点位势高度与5000 gpm之差乘以格点面积的累积值 |
[1] | 王文静, 延军平, 刘永林, 等. 基于综合气象干旱指数的海河流域干旱特征分析[J]. 干旱区地理, 2016, 39(2): 336-344. |
[ Wang Wenjing, Yan Junping, Liu Yonglin, et al. Characteristics of droughts in the Haihe Basin based on meteorological drought composite index[J]. Arid Land Geography, 2016, 39(2): 336-344. ] | |
[2] | 张世喆, 朱秀芳, 刘婷婷, 等. 基于多维Copula的中国干旱特征及危险性分析[J]. 干旱区地理, 2022, 45(2): 333-345. |
[ Zhang Shizhe, Zhu Xiufang, Liu Tingting, et al. Drought characteristics and risk hazard in China based on multidimensional Copula model[J]. Arid Land Geography, 2022, 45(2): 333-345. ] | |
[3] |
Zhang Y, Liu X H, Jiao W Z, et al. A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China[J]. Agricultural Water Management, 2022, 265(C): 107544, doi: 10.1016/j.agat.2022.107544.
doi: 10.1016/j.agat.2022.107544 |
[4] | 袁星, 王钰淼, 张苗, 等. 关于骤旱研究的一些思考[J]. 大气科学学报, 2020, 43(6): 1086-1095. |
[ Yuan Xing, Wang Yumiao, Zhang Miao, et al. A few thoughts on the study of flash drought[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1086-1095. ] | |
[5] |
Qing Y M, Wang S, Ancell B C, et al. Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity[J]. Nature Communications, 2022, 13(1): 1-10.
doi: 10.1038/s41467-021-27699-2 |
[6] |
Christian J I, Basara J B, Hunt E D, et al. Global distribution, trends, and drivers of flash drought occurrence[J]. Nature Communications, 2021, 12(1): 1-11.
doi: 10.1038/s41467-020-20314-w |
[7] |
Ford T W, Labosier C F. Meteorological conditions associated with the onset of flash drought in the eastern United States[J]. Agricultural and Forest Meteorology, 2017, 247: 414-423.
doi: 10.1016/j.agrformet.2017.08.031 |
[8] |
Wang L Y, Yuan X, Xie Z H, et al. Increasing flash droughts over China during the recent global warming hiatus[J]. Scientific Reports, 2016, 6(1): 1-8.
doi: 10.1038/s41598-016-0001-8 |
[9] | Otkin J A, Anderson M C, Hain C, et al. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought[J]. Agricultural and Forest Meteorology, 2016, 218: 230-242. |
[10] |
Nguyen H, Wheeler M C, Otkin J A, et al. Using the evaporative stress index to monitor flash drought in Australia[J]. Environmental Research Letters, 2019, 14(6): 064016, doi: 10.1088/1748-9326/ab2103.
doi: 10.1088/1748-9326/ab2103. |
[11] |
Mahto S S, Mishra V. Dominance of summer monsoon flash droughts in India[J]. Environmental Research Letters, 2020, 15(10): 104061, doi: 10.1088/1748-9326/abaf1d.
doi: 10.1088/1748-9326/abaf1d |
[12] |
Yuan X, Ma Z, Pan M, et al. Microwave remote sensing of short-term droughts during crop growing seasons[J]. Geophysical Research Letters, 2015, 42(11): 4394-4401.
doi: 10.1002/grl.v42.11 |
[13] |
Mo K C, Lettenmaier D P. Heat wave flash droughts in decline[J]. Geophysical Research Letters, 2015, 42(8): 2823-2829.
doi: 10.1002/2015GL064018 |
[14] |
Mo K C, Lettenmaier D P. Precipitation deficit flash droughts over the United States[J]. Journal of Hydrometeorology, 2016, 17(4): 1169-1184.
doi: 10.1175/JHM-D-15-0158.1 |
[15] |
Christian J I, Basara J B, Otkin J A, et al. A methodology for flash drought identification: Application of flash drought frequency across the United States[J]. Journal of Hydrometeorology, 2019, 20(5): 833-846.
doi: 10.1175/JHM-D-18-0198.1 |
[16] |
Zhang Y Q, You Q L, Chen C C, et al. Evaluation of downscaled CMIP5 coupled with VIC model for flash drought simulation in a humid subtropical basin, China[J]. Journal of Climate, 2018, 31(3): 1075-1090.
doi: 10.1175/JCLI-D-17-0378.1 |
[17] |
Zhang H Y, Wu C H, Yeh P J F, et al. Global pattern of short-term concurrent hot and dry extremes and its relationship to large-scale climate indices[J]. International Journal of Climatology, 2020, 40(14): 5906-5924.
doi: 10.1002/joc.v40.14 |
[18] |
Zhang H Y, Wu C H, Hu B X. Recent intensification of short-term concurrent hot and dry extremes over the Pearl River Basin, China[J]. International Journal of Climatology, 2019, 39(13): 4924-4937.
doi: 10.1002/joc.v39.13 |
[19] | 徐华, 徐建军, 范伶俐. ENSO多样性研究进展[J]. 热带气象学报, 2019, 35(2): 281-288. |
[ Xu Hua, Xu Jianjun, Fan Lingli. ENSO diversity: A review[J]. Journal of Tropical Meteorology, 2019, 35(2): 281-288. ] | |
[20] |
王婷, 李双双, 延军平, 等. 基于ENSO发展过程的中国夏季降水时空变化特征[J]. 自然资源学报, 2022, 37(3): 803-815.
doi: 10.31497/zrzyxb.20220316 |
[ Wang Ting, Li Shuangshuang, Yan Junping, et al. Spatio-temporal variation of summer precipitation in China based on ENSO development process[J]. Journal of Natural Resources, 2022, 37(3): 803-815. ]
doi: 10.31497/zrzyxb.20220316 |
|
[21] | 吉珍霞, 侯青青, 裴婷婷, 等. 黄土高原植被物候对季节性干旱的敏感性响应[J]. 干旱区地理, 2022, 45(2): 557-565. |
[ Ji Zhenxia, Hou Qingqing, Pei Tingting, et al. Sensitive response of vegetation phenology to seasonal drought in the Loess Plateau[J]. Arid Land Geography, 2022, 45(2): 557-565. ] | |
[22] |
Wang L Y, Yuan X. Two types of flash drought and their connections with seasonal drought[J]. Advances in Atmospheric Sciences, 2018, 35(12): 1478-1490.
doi: 10.1007/s00376-018-8047-0 |
[23] |
He M Z, Kimball J S, Yi Y, et al. Impacts of the 2017 flash drought in the US northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence[J]. Environmental Research Letters, 2019, 14(7): 074019, doi: 10.1088/1748-9326/ab22c3.
doi: 10.1088/1748-9326/ab22c3 |
[24] | 胡鹏飞, 李净, 王丹, 等. 基于MODIS和TRMM数据的黄土高原农业干旱监测[J]. 干旱区地理, 2019, 42(1): 172-179. |
[ Hu Pengfei, Li Jing, Wang Dan, et al. Monitoring agricultural drought in the Loess Plateau using MODIS and TRMM data[J]. Arid Land Geography, 2019, 42(1): 172-179. ] | |
[25] | 杨艳芬, 王兵, 王国梁, 等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389-7397. |
[ Yang Yanfen, Wang Bing, Wang Guoliang, et al. Ecological regionalization and overview of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(20): 7389-7397. ] | |
[26] |
岳书平, 闫业超, 张树文, 等. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779.
doi: 10.11821/dlxb202111012 |
[ Yue Shuping, Yan Yechao, Zhang Shuwen, et al. Spatiotemporal variations of soil freeze-thaw state in northeast China based on the ERA5-LAND dataset[J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779. ]
doi: 10.11821/dlxb202111012 |
|
[27] | 安彬, 肖薇薇, 张淑兰, 等. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785. |
[ An Bin, Xiao Weiwei, Zhang Shulan, et al. Spatial and temporal characteristics of surface temperature in the Loess Plateau during 1961—2017[J]. Arid Land Geography, 2021, 44(3): 778-785. ] | |
[28] | 贾丹阳, 熊祯祯, 高岩, 等. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031. |
[ Jia Danyang, Xiong Zhenzhen, Gao Yan, et al. Land use/land cover change and influencing factors in the Taitema Lake in the past 30 years[J]. Arid Land Geography, 2021, 44(4): 1022-1031. ] | |
[29] | 杨凯, 胡田田, 王澄海. 青藏高原南、北积雪异常与中国东部夏季降水关系的数值试验研究[J]. 大气科学, 2017, 41(2): 345-356. |
[ Yang Kai, Hu Tiantian, Wang Chenghai. A numerical study on the relationship between the spring-winter snow cover anomalies over the northern and southern Tibetan Plateau and summer precipitation in east China[J]. Atmospheric Sciences, 2017, 41(2): 345-356. ] | |
[30] | 朱玉祥, 丁一汇, 刘海文. 青藏高原冬季积雪影响我国夏季降水的模拟研究[J]. 大气科学, 2009, 33(5): 903-915. |
[ Zhu Yuxiang, Ding Yihui, Liu Haiwen, et al. Simulation of the influence of winter snow depth over the Tibetan Plateau on summer rainfall in China[J]. Atmospheric Sciences, 2009, 33(5): 903-915. ] |
[1] | LI Hongyang, CHEN Tianyu, WANG Shengjie, ZHANG Mingjun. Spatiotemporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021 [J]. Arid Land Geography, 2024, 47(9): 1443-1450. |
[2] | KANG Limin, TENG Xinru, CHE Jiahang, HUAI Baojuan. Spatiotemporal variations of snow cover on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(9): 1462-1471. |
[3] | WANG Nan, LIU Zexuan, ZHENG Jianghua, ZHONG Tao, MENG Chengfeng. Spatiotemporal characteristics and driving forces of glacial lakes in Tianshan Mountains [J]. Arid Land Geography, 2024, 47(9): 1472-1481. |
[4] | ZHANG Shunwei, ZHOU Zixiang, XIONG Xuanchen, ZHOU Jie. Extreme climate characteristics in the Wuding River Basin based on WRF model [J]. Arid Land Geography, 2024, 47(9): 1482-1495. |
[5] | CHAO Bao, ZHAO Yuanyuan, WU Haiyan, LI Yuan, SU Ning. Ecosystem services and its response to climate factors in the Mongolian Plateau from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(9): 1577-1586. |
[6] | XIA Tingting, XUE Xuan, WANG Haowei, XU Wenzhe, SHENG Ziyi, WANG Yang. Changes in terrestrial water storage and its drivers on the north slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(8): 1292-1303. |
[7] | ZHANG Lu, SUN Meiping, YAN Xin, WANG Weisheng, FAN Ruiyi. Investigation and evaluation of surface solar radiation on the north slope of Kunlun Mountains based on multi-source data [J]. Arid Land Geography, 2024, 47(8): 1304-1313. |
[8] | ZHU Chenggang, CHEN Yaning, ZHANG Mingjun, CHE Yanjun, SUN Meiping, ZHAO Ruifeng, WANG Yang, LIU Yuting. Preliminary report on scientific investigation of water resources on the northern slope of Kunlun Mountains [J]. Arid Land Geography, 2024, 47(7): 1097-1105. |
[9] | ZHANG Jing, MA Long, LIU Tingxi, SUN Bolin, QIAO Zixu. Reconstruction of the minimum temperature over the past 202 years based on tree rings of Picea crassifolia in the Helan Mountains [J]. Arid Land Geography, 2024, 47(6): 909-921. |
[10] | FAN Jing, SHEN Yanbo, CHANG Rui. Impact of climate change on the selection of typical meteorological years in solar energy resource assessment [J]. Arid Land Geography, 2024, 47(6): 922-931. |
[11] | LI Hui, LIU Tiejun, WANG Shaohui, LIU Dongwei. Spatial and temporal variation of water use efficiency and its influencing factors in desert steppe of Inner Mongolia from 2001 to 2021 [J]. Arid Land Geography, 2024, 47(6): 993-1003. |
[12] | XIANG Yanyun, WANG Yi, CHEN Yaning, ZHANG Qifei, ZHANG Yujie. Prediction of future hydrological drought risk in the Yarkant River Basin based on CMIP6 models [J]. Arid Land Geography, 2024, 47(5): 798-809. |
[13] | LI Heng, ZHU Bingbing, BIAN He, WANG Rong, TANG Xinyi. Temporal and spatial changes in extreme precipitation and its driving factors in the water-wind erosion crisscross region of the Loess Plateau from 1970 to 2020 [J]. Arid Land Geography, 2024, 47(4): 539-548. |
[14] | ZHAO Mingjie, WANG Ninglian, SHI Chenlie, HOU Jingqi. Temporal and spatial variations of lake ice phenology in large lakes of Central Asia from 2000 to 2020 [J]. Arid Land Geography, 2024, 47(4): 561-575. |
[15] | MENG Xianwen, CAO Jun, XUE Zhanjin. Spatiotemporal changes of the ecosystem service value for mining area in Loess Plateau: A case of Pingshuo mining area [J]. Arid Land Geography, 2024, 47(3): 455-464. |
|