Arid Land Geography ›› 2022, Vol. 45 ›› Issue (1): 1-8.doi: 10.12118/j.issn.1000–6060.2021.535
• Hydrology and Water Resources • Next Articles
CHEN Yaning(),LI Zhi,FANG Gonghuan
Received:
2021-11-12
Revised:
2021-11-23
Online:
2022-01-25
Published:
2022-01-21
CHEN Yaning,LI Zhi,FANG Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J].Arid Land Geography, 2022, 45(1): 1-8.
[1] |
Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10):725-731.
doi: 10.1038/nclimate1592 |
[2] |
Pritchard H D. Asia’s glaciers are a regionally important buffer against drought[J]. Nature, 2017, 545:169-174.
doi: 10.1038/nature22062 |
[3] | IPCC. Climate change 2021: The physical science basis[C]// Masson-Delmotte V, Zhai P, Pirani A, et al. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021. |
[4] |
Chen Y N, Li W H, Deng H J, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6:35458, doi: 10.1038/srep35458.
doi: 10.1038/srep35458 |
[5] |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10:668-673.
doi: 10.1038/ngeo2999 |
[6] |
Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328:1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[7] |
Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549:257-260.
doi: 10.1038/nature23878 |
[8] |
Marzeion B, Cogley J G, Richter K, et al. Attribution of global glacier mass loss to anthropogenic and natural causes[J]. Science, 2014, 345:919-921.
doi: 10.1126/science.1254702 pmid: 25123485 |
[9] |
Chen Y N, Li W H, Fang G H, et al. Hydrological modeling in glacierized catchments of Central Asia: Status and challenges[J]. Hydrology and Earth System Sciences, 2017, 21:669-684.
doi: 10.5194/hess-21-669-2017 |
[10] |
Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438:303-309.
doi: 10.1038/nature04141 |
[11] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1):18-26.
doi: 10.11821/dlxb201701002 |
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1):18-26. ]
doi: 10.11821/dlxb201701002 |
|
[12] |
Chen Y N, Li Z, Fang G H, et al. Large hydrological processes changes in the transboundary rivers of Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10):5059-5069.
doi: 10.1029/2017JD028184 |
[13] | 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1):1-9. |
[Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of northwest China[J]. Arid Land Geography, 2012, 35(1):1-9. ] | |
[14] |
Xu M, Kang S C, Wu H, et al. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia[J]. Atmospheric Research, 2018, 203:141-163.
doi: 10.1016/j.atmosres.2017.12.007 |
[15] |
Ma Q, Zhang J, Ma Y, et al. How do multiscale interactions affect extreme precipitation in eastern Central Asia?[J]. Journal of Climate, 2021, 34(18):7475-7491.
doi: 10.1175/JCLI-D-20-0763.1 |
[16] |
O’Gorman P A. Contrasting responses of mean and extreme snowfall to climate change[J]. Nature, 2014, 512:416-420.
doi: 10.1038/nature13625 |
[17] |
Safeeq M, Shukla S, Arismendi I, et al. Influence of winter season climate variability on snow-precipitation ratio in the western United States[J]. International Journal of Climatology, 2016, 36(9):3175-3190.
doi: 10.1002/joc.4545 |
[18] |
Li Y P, Chen Y N, Wang F, et al. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset[J]. Environmental Research Letters, 2020, 15(10):104040, doi: 10.1088/1748-9326/aba926.
doi: 10.1088/1748-9326/aba926 |
[19] | Li Q, Yang T, Qi Z, et al. Spatiotemporal variation of snowfall to precipitation ratio and its implication on water resources by a regional climate model over Xinjiang, China[J]. Water, 2018, 1463(10):1-13. |
[20] |
Li Z, Chen Y N, Li Y, et al. Declining snowfall fraction in the alpine regions, Central Asia[J]. Scientific Reports, 2020, 10:1-12.
doi: 10.1038/s41598-019-56847-4 |
[21] |
Guo L P, Li L H. Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China[J]. International Journal of Climatology, 2015, 35(7):1379-1393.
doi: 10.1002/joc.2015.35.issue-7 |
[22] | Savoskul O S, Smakhtin V. Glacier systems and seasonal snow cover in six major Asian river basins: Water storage properties under changing climate[R]. Colombo: International Water Management Institute, 2013. |
[23] |
Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9):716-722.
doi: 10.1038/NGEO2513 |
[24] |
Aizen V B, Kuzmichenok V A, Surazakov A B, et al. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data[J]. Global and Planetary Change, 2007, 56(3-4):328-340.
doi: 10.1016/j.gloplacha.2006.07.016 |
[25] |
Pieczonka T, Bolch T. Region-wide glacier mass budgets and area changes for the central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery[J]. Global and Planetary Change, 2015, 128:1-13.
doi: 10.1016/j.gloplacha.2014.11.014 |
[26] | Shangguan D H, Bolch T, Ding Y J, et al. Mass changes of southern and northern Inylchek Glacier, central Tian Shan, Kyrgyzstan, during similar to 1975 and 2007 derived from remote sensing data[J]. Cryosphere, 2015(9):703-717. |
[27] | 王圣杰, 张明军, 李忠勤, 等. 近50年来中国天山冰川面积变化对气候的响应[J]. 地理学报, 2011, 66(1):38-46. |
[Wang Shengjie, Zhang Mingjun, Li Zhongqin, et al. Response of glacier area variation to climate change in Chinese Tianshan Mountains in the past 50 years[J]. Acta Geographica Sinica, 2011, 66(1):38-46. ] | |
[28] |
He Y, Yang T B, Qin J, et al. Glacier variation in response to climate change in Chinese Tianshan Mountains from 1989 to 2012[J]. Journal of Mountain Science, 2015, 12(5):1189-1202.
doi: 10.1007/s11629-015-3445-6 |
[29] |
Aizen V, Aizen E, Kuzmichonok V. Glaciers and hydrological changes in the Tien Shan: Simulation and prediction[J]. Environmental Research Letters, 2007, 2(4):045019, doi: 10.1088/1748-9326/2/4/045019.
doi: 10.1088/1748-9326/2/4/045019 |
[30] |
Lutz A F, Immerzeel W W, Gobiet A, et al. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers[J]. Hydrology and Earth System Sciences, 2013, 17(9):3661-3677.
doi: 10.5194/hess-17-3661-2013 |
[31] |
Li Y P, Chen Y N, Li Z. Climate and topographic controls on snow phenology dynamics in the Tienshan Mountains, Central Asia[J]. Atmospheric Research, 2020, 236:104813, doi: 10.1016/j.atmosr es.2019.104813.
doi: 10.1016/j.atmosr es.2019.104813 |
[32] |
Tang Z G, Wang X R, Wang J, et al. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001—2015[J]. Remote Sensing, 2017, 9:1045, doi: 10.3390/rs9101045.
doi: 10.3390/rs9101045 |
[33] |
Li B F, Li Y P, Chen Y N, et al. Recent fall Eurasian cooling linked to North Pacific sea surface temperatures and a strengthening Siberian high[J]. Nature Communications, 2020, 11:5202, doi: 10.1038/s41467-020-19014-2.
doi: 10.1038/s41467-020-19014-2 |
[34] |
Li Q, Yang T, Zhang F Y, et al. Snow depth reconstruction over last century: Trend and distribution in the Tianshan Mountains, China[J]. Global and Planetary Change, 2019, 173:73-82.
doi: 10.1016/j.gloplacha.2018.12.008 |
[35] | Chen Y N. Water resources research in northwest China[M]. New York: Springer, 2014. |
[36] |
Chen Y N, Li B F, Li Z, et al. Water resource formation and conversion and water security in arid region of northwest China[J]. Journal of Geographical Sciences, 2016, 26:939-952.
doi: 10.1007/s11442-016-1308-x |
[37] | 杨森, 张明军, 王圣杰. 基于GCM和冰芯的天山地区降水同位素的水汽来源影响机制[J]. 干旱区研究, 2018, 35(2):425-435. |
[Yang Sen, Zhang Mingjun, Wang Shengjie. Affecting mechanism of moisture sources of isotopes in precipitation in the Tianshan Mountains based on GCMs and ice core[J]. Arid Zone Research, 2018, 35(2):425-435. ] | |
[38] | Zhang M J, Wang S J. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid Central Asia[J]. Sciences in Cold and Arid Regions, 2018, 10(1):27-37. |
[39] |
Dai X G, Li W J, Ma Z G, et al. Water-vapor source shift of Xinjiang region during the recent twenty years[J]. Progress in Natural Science, 2007, 17(5):569-575.
doi: 10.1080/10020070708541037 |
[40] |
Huang W, Chang S Q, Xie C L, et al. Moisture sources of extreme summer precipitation events in north Xinjiang and their relationship with atmospheric circulation[J]. Advances in Climate Change Research, 2017, 8(1):12-17.
doi: 10.1016/j.accre.2017.02.001 |
[41] |
Wang S J, Zhang M J, Crawford J, et al. The effect of moisture source and synoptic conditions on precipitation isotopes in arid Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(5):2667-2682.
doi: 10.1002/2015JD024626 |
[42] |
Tian L D, Yao T D, MacClune K, et al. Stable isotopic variations in west China: A consideration of moisture sources[J]. Journal of Geophysical Research: Atmospheres, 2007(D10):D10112, doi: 10.1029/2006JD007718.
doi: 10.1029/2006JD007718 |
[43] |
Liu X K, Rao Z G, Zhang X J, et al. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the westerly circulation[J]. Journal of Geographical Sciences, 2015, 25(7):801-816.
doi: 10.1007/s11442-015-1203-x |
[44] | 姚俊强, 杨青, 黄俊利, 等. 天山山区及周边地区水汽含量的计算与特征分析[J]. 干旱区研究, 2012, 29(4):567-573. |
[Yao Junqiang, Yang Qing, Huang Junli, et al. Computation and analysis of water vapor content in the Tianshan Mountains and peripheral regions, China[J]. Arid Zone Research, 2012, 29(4):567-573. ] | |
[45] |
Chen H, Chen Y, Li D, et al. Effect of sub-cloud evaporation on precipitation in the Tianshan Mountains (Central Asia) under the influence of global warming[J]. Hydrological Processes, 2020, 34:5557-5566.
doi: 10.1002/hyp.v34.26 |
[46] |
Yao J Q, Chen Y, Zhao Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585:124823, doi: 10.1016/j.jhydrol.2020. 124823.
doi: 10.1016/j.jhydrol.2020. 124823 |
[47] | Berghuijs W R, Woods R A, Hrachowitz M. A precipitation shift from snow towards rain leads to a decrease in streamflow[J]. Nature Climate Change, 2014(4):583-586. |
[48] |
Regonda S K, Rajagopalan B, Clark M, et al. Seasonal cycle shifts in hydroclimatology over the western United States[J]. Journal of Climate, 2005, 18:372-384.
doi: 10.1175/JCLI-3272.1 |
[49] |
Campbell J L, Driscoll C T, Pourmokhtarian A, et al. Streamflow responses to past and projected future changes in climate at the Hubbard Brook Experimental Forest, New Hampshire, United States[J]. Water Resources Research, 2011, 47(2):W02514, doi: 10.1029/2010WR009438.
doi: 10.1029/2010WR009438 |
[50] |
Liu T, Willems P, Pan X L, et al. Climate change impact on water resource extremes in a headwater region of the Tarim Basin in China[J]. Hydrology and Earth System Sciences, 2011, 15:3511-3527.
doi: 10.5194/hess-15-3511-2011 |
[51] | Zhang F Y, Li L H, Ahmad S. Streamflow pattern variations resulting from future climate change in middle Tianshan Mountains region in China[C]// World Environmental and Water Resources Congress, California, 2017: 437-446. |
[52] |
Qin P H, Xie Z H. Detecting changes in future precipitation extremes over eight river basins in China using RegCM4 downscaling[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(12):6802-6821.
doi: 10.1002/2016JD024776 |
[53] | Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014(4):587-592. |
[54] | Immerzeel W W, Pellicciotti F, Bierkens M F P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds[J]. Nature Geoscience, 2013(6):742-745. |
[55] |
Duethmann D, Menz C, Jiang T, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024: doi: 10.1088/1748-9326/11/5/054024.
doi: 10.1088/1748-9326/11/5/054024 |
[56] |
Zhao Q D, Zhang S Q, Ding Y J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River catchment, central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16(6):2383-2402.
doi: 10.1175/JHM-D-14-0231.1 |
[57] |
Fang G H, Yang J, Chen Y N, et al. Impact of GCM structure uncertainty on hydrological processes in an arid area of China[J]. Hydrology Research, 2018, 49(3-4):893-907.
doi: 10.2166/nh.2017.227 |
[58] |
Hagg W, Hoelzle M, Wagner S, et al. Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya Basin until 2050[J]. Global and Planetary Change, 2013, 110(Part A):62-73.
doi: 10.1016/j.gloplacha.2013.05.005 |
[59] |
Wang X L, Luo Y, Sun L, et al. Attribution of runoff decline in the Amu Darya River in Central Asia during 1951—2007[J]. Journal of Hydrometeorology, 2016, 17:1543-1560.
doi: 10.1175/JHM-D-15-0114.1 |
[60] |
Luo Y, Arnold J, Liu S, et al. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China[J]. Journal of Hydrology, 2013, 477:72-85.
doi: 10.1016/j.jhydrol.2012.11.005 |
[61] |
Luo Y, Wang X L, Piao S L, et al. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-north Karakoram[J]. Scientific Reports, 2018, 8(1):16470, doi: 10.1038/s41598-018-34829-2.
doi: 10.1038/s41598-018-34829-2 pmid: 30405195 |
[1] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[2] | TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River [J]. Arid Land Geography, 2023, 46(9): 1432-1442. |
[3] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[4] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[5] | GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science [J]. Arid Land Geography, 2023, 46(7): 1176-1195. |
[6] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[7] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[8] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[9] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[10] | CAO Xiaoyun,XIAO Jianshe,HAO Xiaohua,SHI Feifei,LIU Zhiyuan,LI Suyun. Variation of snow cover days and topographic differentiation in Sanjiangyuan area from 2001 to 2020 [J]. Arid Land Geography, 2022, 45(5): 1370-1380. |
[11] | LIANG Pengfei,XIN Huijuan,LI Zongxing,ZHANG Baijuan,GUI Juan,DUAN Ran,NAN Fusen,DINGZENG Yangping,YANG Shengmei. Runoff variation characteristics and influencing factors in the Heihe River Basin in the Qilian Mountains [J]. Arid Land Geography, 2022, 45(5): 1460-1471. |
[12] | HU Keke,HE Jiancun,ZHAO Jian,SU Litan,ZHANG Yin. Ecological base flow in Niya River Basin under climate change [J]. Arid Land Geography, 2022, 45(5): 1472-1480. |
[13] | SU Yue,ZHANG Cunhou, Amuersana,LI Ke. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018 [J]. Arid Land Geography, 2022, 45(3): 684-694. |
[14] | HUANG Ying,YANG Jianling,LI Xin,CUI Yang,MA Yang,ZHANG Wen. Climate change characteristics and circulation anomaly causes of the first frost date in Ningxia based on ground temperature [J]. Arid Land Geography, 2022, 45(2): 359-369. |
[15] | WANG Yaqin,YANG Haimei,FAN Wenbo,XU Zhongyu,QIAO Changlu. Migration characteristics of wind erosion climate erosivity and its influencing factors in Xinjiang in recent 50 years [J]. Arid Land Geography, 2022, 45(2): 370-378. |
|