CollectHomepage AdvertisementContact usMessage

›› 2013, Vol. 36 ›› Issue (1): 109-117.

Previous Articles     Next Articles

Application of wind erosion prediction system in Minqin Desert Area

WANG Yan1,2,WANG Ping1   

  1. 1   Key Laboratory of Mechanics on Disaster and Environment in Western China,Lanzhou University,Lanzhou  730000,Gansu,China. 2   College of Energy and Power Engineering,Lanzhou Univ. of Tech.,Lanzhou  730050,Gansu,China
  • Received:2012-04-10 Revised:2012-06-03 Online:2013-01-25

Abstract: Wind erosion results in degradation of the land resources and destroys the ecological environment, which had stimulated a great deal research work in this region. How to predict the soil erosion and the changes of ecological environment aroused by the wind erosion has become an important problem, and it is necessary in the wind erosion control and sustainable use of the land. Based on the field observation of three sand storms in Minqin Desert,the paper investigated the application of Wind Erosion Prediction System(WEPS) in this area. The sand storms occurred on April 19, April 22 and April 23, April 30 of 2009, respectivly. Because there was a continuous wind on April 22 and April 23,the Aeolian sediments after the storm on April 23 was adopted and the two days’ storm was accounted as a sand storm. The paper applied the wind erosion submodel of WEPS to calculate the aeolian discharge in Minqin desert, aiming at exploring the adaptability of WEPS in China, or rather in this region. The results showed that there is a big difference between the practical measured aeolian discharge and the predicted wind-blown mass transport. For fields without natural vegetation and any other plant, WEPS gave a relative good estimation of Aeolian discharge, the maximum calculated value is about 2.2 times as the measured soil discharge mass, and the minimal value is just 0.47. For fields with natural vegetation at and around the research plot, WEPS overestimated the aeolian discharge mass. The maximum calculated value by WEPS is about 41 times as the measured, and the minimal ratio is about 6.7. So, if this model is used without any amendment, it will give a wrong aerolian discharge. Input parameters for WEPS such as wind speed, roughness length, vegetation cover, soil crust and soil diameter were measured to determine friction velocity and threshold friction velocity. Therefore,to want a good prediction of WEPS in China, a great deal of experiments should be conducted to measure these parameters under different means of land use and cultivation in areas where the wind erosion easy occured. A disadvantage of the current WEPS model is that it does not incorporate slope as a variable, more research is needed include field topography and parameters mentioned above in WEPS for better preiction of wind erosion. It is the first time to use the WEPS model to calculate the aeolian discharge in our country.

Key words: WEPS; , Minqin desert; , wind erosion; , prediction

CLC Number: 

  • S151.1