Arid Land Geography ›› 2021, Vol. 44 ›› Issue (3): 807-818.doi: 10.12118/j.issn.1000–6060.2021.03.23
• Climatology and Hydrology • Previous Articles Next Articles
RAN Sihong1,2(),WANG Xiaolei2,3,LUO Yi2,3()
Received:
2020-10-10
Revised:
2021-04-20
Online:
2021-05-25
Published:
2021-06-01
Contact:
Yi LUO
E-mail:18810990976@163.com;luoyi@igsnrr.ac.cn
RAN Sihong,WANG Xiaolei,LUO Yi. Predicting climate change and its impact on runoff in snow-ice basin with multi-climate models[J].Arid Land Geography, 2021, 44(3): 807-818.
Tab. 1
Statistics of basin area, glacier area, elevation, and climatic features in study area"
河流 | 水文站 | 流域面积/km2 | 冰川情况 | 高程/m | 气候特征 | ||||
---|---|---|---|---|---|---|---|---|---|
面积/km2 | 覆盖率/% | 平均 | 最低 | 最高 | 气温/°C | 降水/mm | |||
库玛拉克河 | 协和拉 | 12990 | 2725 | 21.0 | 3732 | 1434 | 7070 | 10.8 | 130.0 |
玛纳斯河 | 肯斯瓦特 | 5163 | 493 | 9.5 | 3252 | 846 | 5145 | 7.2 | 215.0 |
库车河 | 兰干 | 2912 | 15 | 0.5 | 2575 | 1271 | 4488 | 11.4 | 66.5 |
Tab. 3
Brief overview of the 39 climate models in CMIP5"
模式名称 | 所属国家 | 分辨率 | 情景 |
---|---|---|---|
ACCESSE1-3 | 澳大利亚 | 1.25°×1.88° | RCP4.5、RCP8.5 |
ACCESSE1-0 | 澳大利亚 | 1.25°×1.88° | RCP4.5、RCP8.6 |
BCC-CSM1-1 | 中国 | 2.80°×2.80° | RCP2.6、RCP4.5、RCP8.5 |
BCC-CSM1-1-m | 中国 | 1.12°×1.25° | RCP2.6、RCP4.5、RCP8.5 |
BNU-ESM-3 | 中国 | 2.80°×2.80° | RCP2.6、RCP4.5、RCP8.5 |
CanESM2 | 加拿大 | 2.80°×2.80° | RCP2.6、RCP4.5、RCP8.5 |
CCSM4_4 | 美国 | 0.94°×1.25° | RCP2.6、RCP4.5、RCP8.5 |
CESM1-BGC | 美国 | 0.94°×1.25° | RCP4.5、RCP8.5 |
CESM1-CAM5 | 美国 | 0.94°×1.25° | RCP2.6、RCP4.5、RCP8.5 |
CESM1-WACCM | 美国 | 1.90°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
CMCC-CESM | 意大利 | 3.75°×3.75° | RCP8.5 |
CMCC-CM | 意大利 | 0.75°×0.75° | RCP4.5、RCP8.5 |
CMCC-CMS | 意大利 | 1.86°×1.875° | RCP4.5、RCP8.5 |
CNRMCM | 法国 | 1.40°×1.40° | RCP2.6、RCP4.5、RCP8.5 |
CSIRO-Mk3-6-0 | 澳大利亚 | 1.88°×1.88° | RCP2.6、RCP4.5、RCP8.5 |
EC-EARTH | 爱尔兰 | 1.12°×1.25° | RCP2.6、RCP4.5、RCP8.5 |
FGOALS-g2 | 中国 | 2.81°×2.81° | RCP2.6、RCP4.5、RCP8.5 |
FIO-ESM | 中国 | 2.79°×2.81° | RCP2.6、RCP4.5、RCP8.5 |
GFDL-CM3 | 美国 | 2.00°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
GFDL-ESM2G | 美国 | 2.00°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
GFDL-ESM2M | 美国 | 2.00°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
GISS-E2-H | 美国 | 2.00°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
GISS-E2-H-cc | 美国 | 2.00°×2.50° | RCP4.5 |
GISS-E2-R | 美国 | 2.00°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
GISS-E2-R-cc | 美国 | 2.00°×2.50° | RCP4.5 |
HadGEM2-AO | 韩国 | 1.25°×1.88° | RCP2.6、RCP4.5、RCP8.5 |
HadGEM2-CC | 英国 | 1.25°×1.88° | RCP4.5、RCP8.5 |
HadGEM2-ES | 英国 | 1.25°×1.88° | RCP2.6、RCP4.5、RCP8.5 |
INMCM4 | 俄国 | 1.50°×2.00° | RCP4.5、RCP8.5 |
IPSL-CM5A-LR | 法国 | 1.86°×3.75° | RCP2.6、RCP4.5、RCP8.5 |
IPSL-CM5A-MR | 法国 | 1.25°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
IPSL-CM5B-LR | 法国 | 1.9°×3.75° | RCP4.5、RCP8.5 |
MIROC5 | 日本 | 1.40°×1.40° | RCP2.6、RCP4.5、RCP8.5 |
MIROC-ESM | 日本 | 2.81°×2.81° | RCP2.6、RCP4.5、RCP8.5 |
MIROC-ESM-CHEM | 日本 | 2.81°×2.81° | RCP2.6、RCP4.5、RCP8.5 |
MPI-ESM-LR | 德国 | 1.86°×1.88° | RCP2.6、RCP4.5、RCP8.5 |
MPI-ESM-MR | 德国 | 1.86°×1.88° | RCP2.6、RCP4.5、RCP8.5 |
MRI-CGCM3 | 日本 | 1.12°×1.13° | RCP2.6、RCP4.5、RCP8.5 |
NorESM1-M | 挪威 | 1.90°×2.50° | RCP2.6、RCP4.5、RCP8.5 |
Tab. 4
Evaluation indices for assessing runoff simulation of the SWAT-RSG in Kuqa River, Manas River and Kumaric River"
河流 | 水文站 | 月模拟 | 多年平均径流量/108 m3 | ||||||
---|---|---|---|---|---|---|---|---|---|
NSE | PBIAS | 率定期 | 验证期 | ||||||
率定期 | 验证期 | 率定期 | 验证期 | 实测值 | 模拟值 | 实测值 | 模拟值 | ||
库玛拉克河 | 协和拉 | 0.66 | 0.85 | 1.55 | 4.08 | 45.50 | 44.80 | 47.30 | 50.00 |
玛纳斯河 | 肯斯瓦特 | 0.88 | 0.87 | -0.65 | -4.45 | 12.36 | 12.04 | 11.43 | 12.05 |
库车河 | 兰干 | 0.63 | 0.63 | 6.65 | -2.08 | 2.97 | 3.03 | 3.59 | 3.50 |
Tab. 5
Changes of temperature, precipitation, streamflow, and ice melt on averages of the 39 climate models for the two future periods relative to the historical period in the study area"
情景 | 变量 | 库车河 | 玛纳斯河 | 库玛拉克河 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
气温/℃ | 降水/% | 冰融水/% | 径流/% | 气温/℃ | 降水/% | 冰融水/% | 径流/% | 气温/℃ | 降水/% | 冰融水/% | 径流/% | ||
RCP2.6(近期) | 平均值 | 1.7 | 4.7 | -5.7 | 6.4 | 1.5 | 3.7 | 25.0 | 10.1 | 1.7 | 3.3 | 111.8 | 28.3 |
最大值 | 2.9 | 23.6 | 31.2 | 51.6 | 2.9 | 18.1 | 161.5 | 41.8 | 2.6 | 15.5 | 212.6 | 56.2 | |
最小值 | 0.6 | -10.4 | -40.7 | -25.7 | 0.0 | -9.7 | -43.0 | -8.8 | 0.6 | -10.5 | 4.6 | 8.2 | |
标准差 | 0.6 | 7.4 | 15.1 | 15.0 | 0.7 | 5.9 | 61.9 | 13.9 | 0.5 | 6.1 | 52.3 | 13.4 | |
RCP2.6(远期) | 平均值 | 1.8 | 3.9 | -64.6 | 7.8 | 1.7 | 4.7 | -37.9 | 2.9 | 1.9 | 3.8 | 40.5 | 12.9 |
最大值 | 3.6 | 28.0 | -49.1 | 72.8 | 3.1 | 24.9 | 12.1 | 32.8 | 3.5 | 17.2 | 111.5 | 35.9 | |
最小值 | -0.3 | -11.3 | -77.1 | -23.1 | -0.2 | -13.2 | -51.6 | -18.1 | -0.2 | -9.1 | -25.0 | -11.1 | |
标准差 | 0.8 | 9.4 | 7.3 | 20.5 | 0.9 | 7.1 | 13.6 | 10.7 | 0.8 | 7.0 | 33.5 | 11.4 | |
RCP4.5(近期) | 平均值 | 1.6 | 4.4 | -2.1 | 7.4 | 1.4 | 3.8 | 23.5 | 9.8 | 1.7 | 3.2 | 121.1 | 30.5 |
最大值 | 2.7 | 21.9 | 26.4 | 43.2 | 2.4 | 17.7 | 156.5 | 39.7 | 2.7 | 12.9 | 226.8 | 62.9 | |
最小值 | -1.3 | -9.5 | -27.9 | -21.2 | -0.1 | -13.7 | -49.0 | -7.2 | -1.3 | -12.0 | 10.8 | 6.5 | |
标准差 | 0.7 | 7.0 | 12.1 | 14.0 | 0.6 | 6.3 | 58.6 | 12.6 | 0.7 | 5.8 | 52.2 | 11.7 | |
RCP4.5(远期) | 平均值 | 3.0 | 6.3 | -60.0 | 12.4 | 2.5 | 5.8 | -22.0 | 6.6 | 3.0 | 4.4 | 103.4 | 27.0 |
最大值 | 4.9 | 29.2 | -33.3 | 73.8 | 4.8 | 25.4 | 13.9 | 40.8 | 4.9 | 18.1 | 154.2 | 48.0 | |
最小值 | 1.1 | -12.8 | -80.3 | -26.8 | -0.2 | -13.0 | -60.8 | -12.9 | 1.1 | -12.8 | 24.0 | 6.4 | |
标准差 | 0.9 | 8.6 | 11.4 | 19.4 | 1.1 | 7.6 | 20.4 | 11.8 | 0.9 | 7.4 | 31.8 | 10.1 | |
RCP8.5(近期) | 平均值 | 2.0 | 4.2 | 3.4 | 5.8 | 1.6 | 3.7 | 34.5 | 11.4 | 2.0 | 3.1 | 142.9 | 34.8 |
最大值 | 3.1 | 27.8 | 33.5 | 60.3 | 3.1 | 21.6 | 178.3 | 46.0 | 3.0 | 18.3 | 251.4 | 67.9 | |
最小值 | 0.7 | -17.6 | -21.3 | -23.9 | -0.4 | -12.3 | -47.1 | -7.1 | 0.8 | -19.7 | 33.5 | 6.8 | |
标准差 | 0.5 | 7.8 | 12.4 | 15.1 | 0.8 | 6.2 | 71.3 | 14.9 | 0.5 | 7.0 | 54.8 | 13.0 | |
RCP8.5(远期) | 平均值 | 5.2 | 6.0 | -65.1 | 14.3 | 4.2 | 5.9 | -0.3 | 9.8 | 5.2 | 2.5 | 208.2 | 47.1 |
最大值 | 7.5 | 40.5 | -28.2 | 120.4 | 7.7 | 39.1 | 77.8 | 64.7 | 7.4 | 27.3 | 260.0 | 78.0 | |
最小值 | 2.6 | -24.7 | -88.3 | -37.3 | -0.1 | -19.4 | -49.2 | -17.4 | 2.5 | -25.3 | 103.4 | 25.8 | |
标准差 | 1.2 | 12.6 | 15.0 | 29.1 | 1.9 | 10.4 | 37.8 | 16.4 | 1.2 | 10.9 | 32.5 | 11.8 |
[1] | Vaughan G D, Comiso J C, Allison I, et al. Observation: Cryosphere [C] //Climate Change 2013: The Physical Science Basis. New York, USA: Cambridge University Press, 2013: 317-382. |
[2] | 赵宗慈, 罗勇, 黄建斌. 全球冰川正在迅速消融[J]. 气候变化研究进展, 2015,11(6):440-442. |
[ Zhao Zongci, Luo Yong, Huang Jianbin. Global glaciers are rapidly melting[J]. Advances in Climate Change Research, 2015,11(6):440-442. ] | |
[3] |
Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005,438(7066):303-309.
pmid: 16292301 |
[4] |
Unger-Shayesteh K, Vorogushyn S, Farinotti D, et al. What do we know about past changes in the water cycle of Central Asian headwaters? A review[J]. Global and Planetary Change, 2013,110:4-25.
doi: 10.1016/j.gloplacha.2013.02.004 |
[5] |
Hagg W, Braun L N, Weber M, et al. Runoff modelling in glacierized Central Asian catchments for present-day and future climate[J]. Nordic Hydrology, 2006,37(2):93-105.
doi: 10.2166/nh.2006.0008 |
[6] | 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012,35(1):1-9. |
[ Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of northwest China[J]. Arid Land Geography, 2012,35(1):1-9. ] | |
[7] |
Schaner N, Voisin N, Nijssen B, et al. The contribution of glacier melt to streamflow[J]. Environmental Research Letters, 2012,7(3):34029-34036.
doi: 10.1088/1748-9326/7/3/034029 |
[8] | 蒙彦聪, 李忠勤, 徐春海, 等. 中国西部冰川小冰期以来的变化——以天山乌鲁木齐河流域为例[J]. 干旱区地理, 2016,39(3):486-494. |
[ Meng Yancong, Li Zhongqin, Xu Chunhai, et al. Glacier change of western China since the little ice age: A case of the Urumqi River Watershed[J]. Arid Land Geography, 2016,39(3):486-494. ] | |
[9] | 王圣杰, 张明军, 李忠勤, 等. 近50年来中国天山冰川面积变化对气候的响应[J]. 地理学报, 2011,66(1):38-46. |
[ Wang Shengjie, Zhang Mingjun, Li Zhongqin, et al. Response of glacier area variation to climate change in Chinese Tianshan Mountains in the past 50 years[J]. Acta Geographica Sinica, 2011,66(1):38-46. ] | |
[10] |
Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan(Central Asia)[J]. Nature Climate Change, 2012,2(10):725.
doi: 10.1038/nclimate1592 |
[11] | 刘时银, 丁永建, 张勇, 等. 塔里木河流域冰川变化及其对水资源影响[J]. 地理学报. 2006,61(5):482-490. |
[ Liu Shiyin, Ding Yongjian, Zhang Yong, et al. Impact of the glacial change on water resources in the Tarim River Basin[J]. Acta Geographica Sinica, 2006,61(5):482-490. ] | |
[12] |
Khadka D, Babel M S, Shrestha S, et al. Climate change impact on glacier and snow melt and runoff in Tamakoshi Basin in the Hindu Kush Himalayan (HKH) region[J]. Journal of Hydrology. 2014,511(4):49-60.
doi: 10.1016/j.jhydrol.2014.01.005 |
[13] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017,72(1):18-26.
doi: 10.11821/dlxb201701002 |
[ Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017,72(1):18-26. ]
doi: 10.11821/dlxb201701002 |
|
[14] | Sorg A, Huss M, Rohrer M, et al. The days of plenty might soon be over in glacierized Central Asian catchments[J]. Environmental Research Letters, 2014,9:10401810, doi: 10.1088/1748-9326/9/10/104018. |
[15] |
Gan R, Luo Y, Zuo Q, et al. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia[J]. Journal of Hydrology, 2015,523:240-251.
doi: 10.1016/j.jhydrol.2015.01.057 |
[16] | 张宜清. 气候变化对中国天山雨雪冰产流过程的影响[D]. 北京: 中国科学院大学, 2016. |
[ Zhang Yiqing. The impact of climate change on runoff generation and streamflow in the Tianshan Mountains, China[D]. Beijing: The University of Chinese Academy of Sciences, 2016. ] | |
[17] |
Lutz A F, Ter Maat H W, Biemans H, et al. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach[J]. International Journal of Climatology, 2016,36(12):3988-4005.
doi: 10.1002/joc.4608 |
[18] |
Woldemeskel F M, Sharma A, Sivakumar B, et al. A framework to quantify GCM uncertainties for use in impact assessment studies[J]. Journal of Hydrology, 2014,519:1453-1465.
doi: 10.1016/j.jhydrol.2014.09.025 |
[19] |
Immerzeel W W, van Beek L P H, Konz M, et al. Hydrological response to climate change in a glacierized catchment in the Himalayas[J]. Climatic Change, 2012,110(3-4):721-736.
pmid: 26005229 |
[20] |
Zhang Y, Luo Y, Sun L, et al. Using glacier area ratio to quantify effects of melt water on runoff[J]. Journal of Hydrology, 2016,538:269-277.
doi: 10.1016/j.jhydrol.2016.04.026 |
[21] |
Ma C, Sun L, Liu S, et al. Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia[J]. Journal of Arid Land, 2015,7(4):501-513.
doi: 10.1007/s40333-015-0041-0 |
[22] |
Su F, Zhang L, Ou T, et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J]. Global and Planetary Change, 2016,136:82-95.
doi: 10.1016/j.gloplacha.2015.10.012 |
[23] |
Peel M C, Srikanthan R, Mcmahon T A, et al. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data[J]. Hydrology and Earth System Sciences, 2015,19(4):1615-1639.
doi: 10.5194/hess-19-1615-2015 |
[24] |
Bosshard T, Kotlarski S, Zappa M, et al. Hydrological climate-impact projections for the Rhine River: GCM-RCM uncertainty and separate temperature and precipitation effects[J]. Journal of Hydrometeorology, 2014,15(2):697-713.
doi: 10.1175/JHM-D-12-098.1 |
[25] |
Vetter T, Huang S, Aich V, et al. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents[J]. Earth System Dynamics, 2015,6(1):17-43.
doi: 10.5194/esd-6-17-2015 |
[26] |
Xu H, Taylor R G, Xu Y. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China[J]. Hydrology and Earth System Sciences, 2011,15(1):333-344.
doi: 10.5194/hess-15-333-2011 |
[27] |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010,328(5984):1382-1385.
doi: 10.1126/science.1183188 |
[28] | 王国亚, 沈永平, 苏宏超, 等. 1956—2006年阿克苏河径流变化及其对区域水资源安全的可能影响[J]. 冰川冻土, 2008,30(4):562-568. |
[ Wang Guoya, Shen Yongping, Su Hongchao, et al. Runoff changes in Aksu River Basin during 1956—2006 and their impacts on water availability for Tarim River[J]. Journal of Glaciology and Geocryology, 2008,30(4):562-568. ] | |
[29] | 沈永平, 王国亚, 丁永建, 等. 1957—2006年天山萨雷扎兹库玛拉克河流域冰川物质平衡变化及其对河流水资源的影响[J]. 冰川冻土, 2009,31(5):792-800. |
[ Shen Yongping, Wang Guoya, Ding Yongjian, et al. Changes in glacier mass balance in eatershed of Sary Jaz-Kumarik Rivers of Tianshan Mountains in 1957—2006 and their impact on water resources and trend to end of the 21th century[J]. Journal of Glaciology and Geocryology, 2009,31(5):792-800. ] | |
[30] | 叶柏生, 丁永建, 刘潮海. 不同规模山谷冰川及其径流对气候变化的响应过程[J]. 冰川冻土, 2001,23(2):103-110. |
[ Ye Baisheng, Ding Yongjian, Liu Chaohai. Response of valley glaciers in various size and their runoff to climate change[J]. Journal of Glaciology and Geocryology, 2001,23(2):103-110. ] | |
[31] | 高前兆, 王润, Ernst Giese. 气候变化对塔里木河来自天山的地表径流影响[J]. 冰川冻土, 2008,30(1):1-11. |
[ Gao Qianzhao, Wang Run, Ernst Giese. Impact of climate change on surface runoff of Tarim River originating from the south slopes of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2008,30(1):1-11. ] | |
[32] |
Luo Y, Arnold J, Liu S, et al. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China[J]. Journal of Hydrology, 2013,477:72-85.
doi: 10.1016/j.jhydrol.2012.11.005 |
[33] |
Aizen V B, Aizen E M, Melack J M, et al. Climatic and hydrologic changes in the Tien Shan, Central Asia[J]. Journal of Climate, 1997,10(6):1393-1404.
doi: 10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2 |
[34] |
Guo W, Liu S, Xu J, et al. The second Chinese glacier inventory: Data, methods and results[J]. Journal of Glaciology, 2015,61(226):357-372.
doi: 10.3189/2015JoG14J209 |
[35] |
Aizen V B, Kuzmichenok V A, Surazakov A B, et al. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data[J]. Global and Planetary Change, 2007,56(3-4):328-340.
doi: 10.1016/j.gloplacha.2006.07.016 |
[36] |
Yatagai A, Kamiguchi K, Arakawa O, et al. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of the American Meteorological Society, 2012,93(9):1401-1415.
doi: 10.1175/BAMS-D-11-00122.1 |
[37] |
Sheffield J, Goteti G, Wood E F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling[J]. Journal of Climate, 2006,19(13):3088-3111.
doi: 10.1175/JCLI3790.1 |
[38] |
Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014,4(7):587-592.
doi: 10.1038/nclimate2237 |
[39] | 李兰海, 尚明, 张敏生, 等. APHRODITE降水数据驱动的融雪径流模拟[J]. 水科学进展, 2014,25(1):53-59. |
[ Li Lanhai, Shang Ming, Zhang Minsheng, et al. Snowmelt runoff simulation driven by APHRODITE precipitation dataset[J]. Advances in Water Science, 2014,25:53-59. ] | |
[40] |
Lutz A F, Immerzeel W W, Gobiet A, et al. Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications for Central Asian glaciers[J]. Hydrology and Earth System Sciences, 2013,17(9):3661-3677.
doi: 10.5194/hess-17-3661-2013 |
[41] |
Wang X, Sun L, Zhang Y, et al. Rationalization of altitudinal precipitation profiles in a data-scarce glacierized watershed simulation in the Karakoram[J]. Water, 2016,8(5):186.
doi: 10.3390/w8050186 |
[42] | 王晓蕾, 孙林, 张宜清, 等. 用分布式水文模型识别流域冰川融水对径流的贡献——以天山库玛拉克河为例[J]. 资源科学, 2015,37(3):475-484. |
[ Wang Xiaolei, Sun Lin, Zhang Yiqing, et al. Estimation of glacier melt contribution to streamflow using a distributed hydrologic model for the Kumaric River, Tien Shan[J]. Resources Science, 2015,37(3):475-484. ] | |
[43] |
Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-groundwater flow model[J]. Journal of Hydrology, 1993,142(1-4):47-69.
doi: 10.1016/0022-1694(93)90004-S |
[44] |
Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I: A discussion of principles[J]. Journal of Hydrology, 1970,10(3):282-290.
doi: 10.1016/0022-1694(70)90255-6 |
[45] | Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transaction of the ASABE, 2007,50(3):885-900. |
[46] |
Masson D, Knutti R. Spatial-scale dependence of climate model performance in the CMIP3 ensemble[J]. Journal of Climate, 2009,24(11):2680-2692.
doi: 10.1175/2011JCLI3513.1 |
[47] | Wilby R L, Charles S P, Zorita E, et al. Guidelines for use of climate scenarios developed from statistical downscaling methods[J]. Supporting Material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 2004,24(27):119-120. |
[48] |
Arnell N W. Climate change and water resources in Britain[J]. Climate Change, 1998,39(1):83-110.
doi: 10.1023/A:1005339412565 |
[49] | 刘潮海, 施雅风, 王宗太, 等. 中国冰川资源及其分布特征——中国冰川目录编制完成[J]. 冰川冻土, 2000,22(2):106-112. |
[ Liu Chaohai, Shi Yafeng, Wang Zongtai, et al. Glacier resources and their distributive characteristics in China: A review on Chinese glacier inventory[J]. Journal of Glaciolgy and Geocryology, 2000,22(2):106-112. ] | |
[50] | 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016,12(1):10-19. |
[ Zhang Yanwu, Zhang Li, Xu Ying. Simulations and projections of the surface air temperature in China by CMIP5 models[J]. Advances in Climate Change Research, 2016,12(1):10-19. ] | |
[51] |
Tianjun Z, Fengfei S, Xiaolong C. Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results[J]. Advances in Atmospheric Sciences, 2013,30(3):638-657.
doi: 10.1007/s00376-013-2205-1 |
[52] |
Kong Y, Pang Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge[J]. Journal of Hydrology, 2012, 434-435:121-129.
doi: 10.1016/j.jhydrol.2012.02.029 |
[53] |
Kaldybayev A, Chen Y, Issanova G, et al. Runoff response to the glacier shrinkage in the Karatal River Basin, Kazakhstan[J]. Arabian Journal of Geosciences, 2016,9(3):208.
doi: 10.1007/s12517-015-2106-y |
[54] |
Semenova O, Beven K. Barriers to progress in distributed hydrological modelling[J]. Hydrological Processes, 2015,29(8):2074-2078.
doi: 10.1002/hyp.v29.8 |
[55] |
Kay A L, Davies H N, Bell V A, et al. Comparison of uncertainty sources for climate change impacts: Flood frequency in England[J]. Climatic Change, 2009,92(1):41-63.
doi: 10.1007/s10584-008-9471-4 |
[56] |
Haque M M, Rahman A, Hagare D, et al. Estimation of catchment yield and associated uncertainties due to climate change in a mountainous catchment in Australia[J]. Hydrological Processes, 2015,29(19):4339-4349.
doi: 10.1002/hyp.10492 |
[57] | Luo Y, Wang X, Piao S, et al. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-north Karakoram[J]. Sentific Report, 2018,8:16470, doi: 10.1038/s41598-018-34829-2. |
[1] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[2] | TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River [J]. Arid Land Geography, 2023, 46(9): 1432-1442. |
[3] | WEI Yingnan, MA Long, SUN Bolin, ZHANG Jing. Reconstruction of historical runoff in the southern foothills of the Da Hinggan Ling Mountains based on Picea koraiensis [J]. Arid Land Geography, 2023, 46(8): 1269-1278. |
[4] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[5] | CHENG Shuo, LI Yanzhong, XING Yincong, YU Zhiguo, WANG Yuangang, HUANG Manjie. Simulation performance of remote sensing precipitation products on hydrological drought characteristics in the source region of the Yellow River [J]. Arid Land Geography, 2023, 46(7): 1063-1072. |
[6] | YANG Xuewen, WANG Ninglian, LIANG Qian, CHEN An’an. Glacier changes on the north slope of Tianshan Mountains in recent 60 years [J]. Arid Land Geography, 2023, 46(7): 1073-1083. |
[7] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[8] | GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science [J]. Arid Land Geography, 2023, 46(7): 1176-1195. |
[9] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[10] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[11] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[12] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[13] | JI Qin, ZHANG Cuilan, DING Yuekai, CAO Xiangqin, LIANG Wenli. Glacier monitoring in Qomolangma Nature Reserve based on multi-source remote sensing data [J]. Arid Land Geography, 2023, 46(10): 1591-1601. |
[14] | LIU Xin, KANG Yanming, XIN Yu, CHEN Yonghang, ZHOU Haijiang, QIN Han, HE Qing, WANG Zhimin. Evaluation of simulation results from two cumulus parameterization schemes in RegCM4.6 in East Asia [J]. Arid Land Geography, 2023, 46(1): 23-35. |
[15] | DING Yuekai, LIU Rui, ZHANG Cuilan, TONG Liyuan, DONG Jun. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas [J]. Arid Land Geography, 2022, 45(6): 1870-1880. |
|