Arid Land Geography ›› 2023, Vol. 46 ›› Issue (11): 1836-1847.doi: 10.12118/j.issn.1000-6060.2022.667
• Biology and Pedology • Previous Articles Next Articles
CUI Jintao1(),Mamat SAWUT1,2,3()
Received:
2022-12-15
Revised:
2023-01-17
Online:
2023-11-25
Published:
2023-12-05
CUI Jintao, Mamat SAWUT. Estimation of leaf water content in upland cotton based on feature band selection and machine learning[J].Arid Land Geography, 2023, 46(11): 1836-1847.
Tab. 2
Spectral characteristic variable screening methods"
变量筛选方法 | 描述 |
---|---|
CC | 运算效率高,过程简单。变量间存在共线性。 |
CARS | 有效去除自相关性高的波段,适合高维数据的筛选[ |
SPA | 变量间冗余少,共线性最小,缩短建模时间[ |
GA | 具有全局优化能力。但需要多次运算以确定最佳变量子集。 |
MC-UVE | 稳定性较高。需要定义阈值,导致变量数目改变。 |
CARS-SPA | 进一步剔除冗余信息,提取出有效波段且多重共线性较低,运算效率较高[ |
Tab. 3
Modeling results of leaf water content of cotton under different order differential"
微分阶数 | 算法 | 表达式 | R2 | RMSE |
---|---|---|---|---|
0.7 | WOA-RFR | y=0.6934x+0.2403 | 0.894 | 0.017 |
SVR | y=0.4627x+0.4201 | 0.553 | 0.029 | |
RFR | y=0.5463x+0.3546 | 0.885 | 0.021 | |
0.9 | WOA-RFR | y=0.7086x+0.2290 | 0.846 | 0.018 |
SVR | y=0.5242x+0.3706 | 0.650 | 0.026 | |
RFR | y=0.5545x+0.3491 | 0.882 | 0.021 | |
1.1 | WOA-RFR | y=0.7086x+0.2254 | 0.877 | 0.017 |
SVR | y=0.6291x+0.2896 | 0.767 | 0.022 | |
RFR | y=0.6121x+0.3045 | 0.897 | 0.019 | |
1.3 | WOA-RFR | y=0.6778x+0.2522 | 0.927 | 0.016 |
SVR | y=0.7505x+0.1953 | 0.881 | 0.016 | |
RFR | y=0.6206x+0.2976 | 0.898 | 0.019 | |
1.7 | WOA-RFR | y=0.6381x+0.2816 | 0.844 | 0.020 |
SVR | y=0.7293x+0.2117 | 0.889 | 0.016 | |
RFR | y=0.5831x+0.3271 | 0.893 | 0.020 | |
1.9 | WOA-RFR | y=0.7061x+0.2293 | 0.851 | 0.018 |
SVR | y=0.6169x+0.3022 | 0.732 | 0.023 | |
RFR | y=0.5676x+0.3392 | 0.880 | 0.021 |
Tab. 4
R2 and RMSE of leaf water content prediction models in calibration and validation sets"
变量筛选方法 | 算法 | 建模集 | 验证集 | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
全波段 | WOA-RFR | 0.573 | 0.029 | 0.480 | 0.030 | |
SVR | 0.375 | 0.032 | 0.035 | 0.037 | ||
RFR | 0.583 | 0.030 | 0.021 | 0.032 | ||
CC | WOA-RFR | 0.927 | 0.016 | 0.946 | 0.017 | |
SVR | 0.881 | 0.016 | 0.908 | 0.016 | ||
RFR | 0.898 | 0.019 | 0.950 | 0.022 | ||
CARS | WOA-RFR | 0.912 | 0.017 | 0.929 | 0.015 | |
SVR | 0.688 | 0.040 | 0.977 | 0.033 | ||
RFR | 0.889 | 0.025 | 0.916 | 0.023 | ||
SPA | WOA-RFR | 0.937 | 0.016 | 0.941 | 0.015 | |
SVR | 0.398 | 0.034 | 0.757 | 0.024 | ||
RFR | 0.913 | 0.022 | 0.964 | 0.022 | ||
GA | WOA-RFR | 0.622 | 0.028 | 0.647 | 0.025 | |
SVR | 0.712 | 0.024 | 0.723 | 0.002 | ||
RFR | 0.889 | 0.024 | 0.858 | 0.001 | ||
MC-UVE | WOA-RFR | 0.847 | 0.020 | 0.868 | 0.016 | |
SVR | 0.882 | 0.015 | 0.883 | 0.015 | ||
RFR | 0.852 | 0.025 | 0.821 | 0.024 | ||
CARS-SPA | WOA-RFR | 0.935 | 0.017 | 0.942 | 0.019 | |
SVR | 0.326 | 0.036 | 0.568 | 0.029 | ||
RFR | 0.911 | 0.023 | 0.878 | 0.024 |
[1] | 刘文静, 范永胜, 董彦琪, 等. 我国棉花生产现状分析及建议[J]. 中国种业, 2022(1): 21-25. |
[ Liu Wenjing, Fan Yongsheng, Dong Yan Qi, et al. Analysis and suggestions on the current situation of cotton production in China[J]. China Seed Industry, 2022(1): 21-25. ] | |
[2] |
马春玥, 买买提·沙吾提, 依尔夏提·阿不来提, 等. 新疆棉花种植业地理集聚特征及影响因素研究[J]. 作物学报, 2019, 45(12): 1859-1867.
doi: 10.3724/SP.J.1006.2019.94041 |
[ Ma Chunyue, Sawut Mamat, Ablet Ershat, et al. Characteristics and influencing factors of geographical agglomeration of cotton plantation in Xinjiang[J]. Acta Agronomica Sinica, 2019, 45(12): 1859-1867. ]
doi: 10.3724/SP.J.1006.2019.94041 |
|
[3] | 孙俊, 丛孙丽, 毛罕平, 等. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型[J]. 农业工程学报, 2017, 33(5): 178-184. |
[ Sun Jun, Cong Sunli, Mao Hanping, et al. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 178-184. ] | |
[4] | Junttila S, Hölttä T, Saarinen N, et al. Close-range hyperspectral spectroscopy reveals leaf water content dynamics[J]. Remote Sensing of Environment, 2022, 277: 113071, doi: 10.20944/preprints 202108.0497.v1. |
[5] |
Li L, Ustin S L, Riano D. Retrieval of fresh leaf fuel moisture content using genetic algorithm partial least squares (GA-PLS) modeling[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 216-220.
doi: 10.1109/LGRS.2006.888847 |
[6] |
Sun J, Zhou X, Hu Y G, et al. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2019, 160: 153-159.
doi: 10.1016/j.compag.2019.03.004 |
[7] | Li X L, Wei Z X, Peng F F, et al. Estimating the distribution of chlorophyll content in CYVCV-infected lemon leaf using hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2022, 198: 107036, doi: 10.1016/j.compag.2022.107036. |
[8] | 杨宝华, 陈建林, 陈林海, 等. 基于敏感波段的小麦冠层氮含量估测模型[J]. 农业工程学报, 2015, 31(22): 176-182. |
[ Yang Baohua, Chen Jianlin, Chen Linhai, et al. Estimation model of wheat canopy nitrogen content based on sensitive bands[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 176-182. ] | |
[9] | 张文旭, 佟炫梦, 周天航, 等. 基于高光谱成像的棉花叶片氮素含量遥感估测[J]. 沈阳农业大学学报, 2021, 52(5): 586-596. |
[ Zhang Wenxu, Tong Xuanmeng, Zhou Tianhang, et al. Remote sensing estimation of cotton leaf nitrogen content based on hyperspectral imaging[J]. Journal of Shenyang Agricultural University, 2021, 52(5): 586-596. ] | |
[10] | 易翔, 张立福, 吕新, 等. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234. |
[ Yi Xiang, Zhang Lifu, Lü Xin, et al. Estimation of cotton above-ground biomass based on unmanned aerial vehicle hyperspectral and successive projections algorithm[J]. Cotton Science, 2021, 33(3): 224-234. ] | |
[11] | 陈鹏. 基于无人机多源遥感的马铃薯叶绿素含量反演机理及模型构建[D]. 焦作: 河南理工大学, 2019. |
[ Chen Peng. Retrieval mechanism and model construction of chlorophyll content in potato based on multi-source remote sensing of unmanned aerial vehicle[D]. Jiaozuo: Henan Polytechnic University, 2019. ] | |
[12] | 于雷, 洪永胜, 周勇, 等. 高光谱估算土壤有机质含量的波长变量筛选方法[J]. 农业工程学报, 2016, 32(13): 95-102. |
[ Yu Lei, Hong Yongsheng, Zhou Yong, et al. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 95-102. ] | |
[13] | 王佳文, 彭杰, 纪文君, 等. 基于电磁感应数据的南疆棉田土壤pH反演研究[J]. 干旱区研究, 2022, 39(4): 1293-1302. |
[ Wang Jiawen, Peng Jie, Ji Wenjun, et al. Soil pH inversion based on electromagnetic induction data in cotton field of southern Xinjiang[J]. Arid Zone Research, 2022, 39(4): 1293-1302. ] | |
[14] |
Li L L, Sun J, Tseng M L, et al. Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation[J]. Expert Systems with Applications, 2019, 127: 58-67.
doi: 10.1016/j.eswa.2019.03.002 |
[15] |
Zhou J, Zhu S Li, Qiu Y G, et al. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm[J]. Acta Geotechnica, 2022, 17: 1343-1366.
doi: 10.1007/s11440-022-01450-7 |
[16] | Zhao F, Li W D. A combined model based on feature selection and WOA for PM2.5 concentration forecasting[J]. Atmosphere, 2019, 10(4): 223, doi: 10.3390/atmos10040223. |
[17] | 苏毅, 王克如, 李少昆, 等. 棉花植株水分含量的高光谱监测模型研究[J]. 棉花学报, 2010, 22(6): 554-560. |
[ Su Yi, Wang Keru, Li Shaokun, et al. Monitoring models of the plant water content based on cotton canopy hyperspectral reflectance[J]. Cotton Science, 2010, 22(6): 554-560. ] | |
[18] |
王强, 易秋香, 包安明, 等. 棉花冠层水分含量估算的高光谱指数研究[J]. 光谱学与光谱分析, 2013, 33(2): 507-512.
pmid: 23697143 |
[ Wang Qiang, Yi Qiuxiang, Bao Anming, et al. Discussion on hyperspectral index for the estimation of cotton canopy water content[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 507-512. ]
pmid: 23697143 |
|
[19] | 赵巧珍, 丁建丽, 韩礼敬, 等. MODIS和Landsat时空融合影像在土壤盐渍化监测中的适用性研究——以渭干河—库车河三角洲绿洲为例[J]. 干旱区地理, 2022, 45(4): 1155-1164. |
[ Zhao Qiaozhen, Ding Jianli, Han Lijing, et al. Exploring the application of MODIS and Landsat spatiotemporal fusion images in soil salinization: A case of Ugan River-Kuqa River Delta Oasis[J]. Arid Land Geography, 2022, 45(4): 1155-1164. ] | |
[20] | 玉苏甫·买买提, 吐尔逊·艾山, 买合皮热提·吾拉木. 新疆渭-库绿洲棉花种植面积遥感监测研究[J]. 农业现代化研究, 2014, 35(2): 240-243. |
[ Mamat Yusup, Hasan Tursun, Gulam Magpirat. Remote sensing of cotton plantation areas monitoring in delta oasis of Ugan-Kucha River, Xinjiang[J]. Research of Agricultural Modernization, 2014, 35(2): 240-243. ] | |
[21] | 刘帆. 分数阶微分算法在医学超声弹性图像去噪中的应用研究[D]. 昆明: 昆明理工大学, 2018. |
[ Liu Fan. Application of fractional differential algorithm in medical ultrasonic elastic image denoising[D]. Kunming: Kunming University of Science and Technology, 2018. ] | |
[22] | 李长春, 施锦锦, 马春艳, 等. 基于小波变换和分数阶微分的冬小麦叶绿素含量估算[J]. 农业机械学报, 2021, 52(8): 172-182. |
[ Li Changchun, Shi Jinjin, Ma Chunyan, et al. Estimation of chlorophyll content in winter wheat based on wavelet transform and fractional differential[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 172-182. ] | |
[23] |
Li H D, Liang Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
doi: 10.1016/j.aca.2009.06.046 pmid: 19616692 |
[24] |
Zhang J K, Rivard B, Rogge D M. The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data[J]. Sensors, 2008, 8(2): 1321-1342.
pmid: 27879768 |
[25] | 程介虹, 陈争光, 衣淑娟. 最小相关系数的多元校正波长选择算法[J]. 光谱学与光谱分析, 2022, 42(3): 719-725. |
[ Cheng Jiehong, Chen Zhengguang, Yi Shujuan. Wavelength selection algorithm based on minimum correlation coefficient for multivariate calibration[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 719-725. ] | |
[26] | 宋相中. 近红外光谱定量分析中三种新型波长选择方法研究[D]. 北京: 中国农业大学, 2017. |
[ Song Xiangzhong. Research of three new wavelength selection methods in near infrared spectroscopy quantitative analysis area[D]. Beijing: China Agricultural University, 2017. ] | |
[27] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
doi: 10.1016/j.advengsoft.2016.01.008 |
[28] | 李畸勇, 张伟斌, 赵新哲, 等. 改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J]. 电工技术学报, 2021, 36(9): 1771-1781. |
[ Li Qiyong, Zhang Weibin, Zhao Xinzhe, et al. Global maximum power point tracking for PV array based on support vector regression optimized by improved whale algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1771-1781. ] | |
[29] | 吾木提·艾山江, 买买提·沙吾提, 马春玥. 基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算[J]. 激光与光电子学进展, 2019, 56(15): 251-259. |
[ Hasan Umut, Sawut Mamat, Ma Chunyue. Hyperspectral estimation of wheat leaf water content using fractional differentials and successive projection algorithm-back propagation neural network[J]. Laser & Optoelectronics Progress, 2019, 56(15): 251-259. ] | |
[30] |
Zhang M J, Zhang S Z, Iqbal J. Key wavelengths selection from near infrared spectra using Monte Carlo sampling-recursive partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 128: 17-24.
doi: 10.1016/j.chemolab.2013.07.009 |
[31] |
Han Z Z, Deng L M. Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data[J]. Computers and Electronics in Agriculture, 2018, 153: 248-255.
doi: 10.1016/j.compag.2018.08.018 |
[32] | Jia M, Li W, Wang K K, et al. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat[J]. Computers and Electronics in Agriculture, 2019, 165: 104942, doi: 10.1016/j.compag.2019.104942. |
[33] | Mohammadi B, Mehdizadeh S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm[J]. Agricultural Water Management, 2020, 237: 106145, doi: 10.1016/j.agwat.2020.106145. |
[1] | LI Shiyao, CONG Shixiang, WANG Rongrong, YU Hailong, HUANG Juying. Monitoring of maize canopy SPAD value under drought stress based on UAV multi-spectral remote sensing [J]. Arid Land Geography, 2023, 46(7): 1121-1132. |
[2] | WEI Huimin, JIA Keli, ZHANG Xu, ZHANG Junhua. Prediction of soil salinity based on machine learning and multispectral remote sensing in Yinchuan Plain [J]. Arid Land Geography, 2023, 46(1): 103-114. |
[3] | ZHAO Shuang,DING Jianli,HAN Lijing,HUANG Shuai,GE Xiangyu. Response analysis and modeling of microwave dielectric properties of typical saline soil in Xinjiang [J]. Arid Land Geography, 2022, 45(5): 1534-1546. |
[4] | LIU Xuhui,BAI Yungang,CHAI Zhongping,ZHANG Jianghui,DING Bangxin,JIANG Zhu. Inversion and validation of soil salinity based on multispectral remote sensing in typical oasis cotton field in spring [J]. Arid Land Geography, 2022, 45(4): 1165-1175. |
[5] | YIN Hanmin,Guli JIAPAER,YU Tao,Jeanine UMUHOZA,LI Xu. Wheat yield estimation with remote sensing in northern Kazakhstan [J]. Arid Land Geography, 2022, 45(2): 488-498. |
[6] | HU Guigui,YANG Fenli,YANG Lian’an,ZHENG Yurong,WANG Hui,CHEN Weijun,LI Yali. Spatial prediction modeling of soil organic matter content based on principal components and machine learning [J]. Arid Land Geography, 2021, 44(4): 1114-1124. |
[7] | TIAN Yanjun,SHI Ying,SHUAI Yanmin,YANG Jian,SHAO Congying,FAN Lianlian,MA Honghong. Land cover information retrieval from temporal features based remote sensing images [J]. Arid Land Geography, 2021, 44(2): 450-459. |
[8] | LI Hui-rong. Estimation of snow depth based on reflectance and bright temperature in Xilin Gol League [J]. Arid Land Geography, 2020, 43(6): 1567-1572. |
[9] | CAO Xiao-yi, DING Jian-li, GE Xiang-yu, LIANG Jing, CHEN Wen-qian, CHEN Xiang-yue, TANG Pu-en. Estimation of soil conductivity based on spectral simulation of different satellites [J]. Arid Land Geography, 2020, 43(1): 172-181. |
[10] | BAO Qing-ling, DING Jian-li, WANG Jing-zhe, CAI Liang-hong. Hyperspectral detection of soil organic matter content based on random forest algorithm [J]. Arid Land Geography, 2019, 42(6): 1404-1414. |
[11] | ZHANG Xi-wei, WANG Lei, WANG Xi-yuan. Sand information extraction method based on CART decision tree [J]. Arid Land Geography, 2019, 42(5): 1133-1140. |
[12] | WANG Tao, YU Cai-li, YAO Na, ZHANG Nan-nan, BAI Tie-cheng. A comparison of the salt content in sandy soil between the MLR model and PLSR model [J]. 干旱区地理, 2018, 41(6): 1295-1302. |
[13] | CAO Xiao-yang, MU Yue, CAO Xiao-ming, ZHANG Pu, FENG Yi-ming. Grain size retrieving of gobi surface based on hyperspectral data [J]. , 2017, 40(2): 397-404. |
[14] | WANG Shuang, DING Jian-li, WANG lu, NIU Zeng-yi. Remote sensing monitoring of soil salinization based on surface spectral modeling [J]. , 2016, 39(1): 190-198. |
[15] | XI A-xing, LIU Zhi-hui, XU Qian, ZHANG Bo. Retrieval method for estimating snow porosity in the northern slope of Tianshan Mountains based on hyperspectral data [J]. , 2015, 38(6): 1253-1261. |
|