Arid Land Geography ›› 2023, Vol. 46 ›› Issue (11): 1826-1835.doi: 10.12118/j.issn.1000-6060.2023.083
• Earth Surface Process • Previous Articles Next Articles
WANG Lijie(),XIAO Fengjun(),DONG Zhibao,MA Huirong,CHEN Hao
Received:
2023-02-25
Revised:
2023-04-21
Online:
2023-11-25
Published:
2023-12-05
WANG Lijie, XIAO Fengjun, DONG Zhibao, MA Huirong, CHEN Hao. Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin[J].Arid Land Geography, 2023, 46(11): 1826-1835.
Tab. 1
Grain size distribution of surface sediments at MRS"
粒级 | 粒径/mm | 沙粒级配/% | ||||||
---|---|---|---|---|---|---|---|---|
MRC1 | SBC1 | MRC2 | SBC2 | MRC3 | SBC3 | MRC4 | ||
砾石 | >2 | 48.51 | 13.13 | 46.95 | 12.59 | 50.19 | 14.12 | 44.24 |
极粗沙 | 1~2 | 11.03 | 28.03 | 13.01 | 26.00 | 10.45 | 35.90 | 7.44 |
粗沙 | 0.5~1 | 1.02 | 9.20 | 1.19 | 8.22 | 1.26 | 12.41 | 0.83 |
中沙 | 0.25~0.5 | 2.22 | 4.51 | 2.19 | 5.33 | 2.23 | 3.76 | 1.89 |
细沙 | 0.125~0.25 | 12.00 | 20.05 | 11.97 | 20.47 | 11.62 | 14.80 | 14.16 |
极细沙 | 0.0625~0.125 | 16.57 | 19.65 | 16.04 | 19.70 | 15.91 | 14.21 | 20.42 |
粉沙黏土 | <0.0625 | 8.65 | 5.43 | 8.65 | 7.68 | 8.33 | 4.80 | 11.02 |
Tab. 2
Content of major elements in surface sediments at MRS"
元素 | MRS | 变化范围 | 平均值 | 标准差 | 变异系数 | 背景值[ |
---|---|---|---|---|---|---|
SiO2 | MRC | 61.22~64.09 | 62.56 | 1.09 | 0.02 | 66.00 |
SBC | 62.43~65.83 | 64.32 | 1.06 | 0.02 | ||
Al2O3 | MRC | 9.09~10.39 | 9.82 | 0.48 | 0.05 | 15.20 |
SBC | 9.59~10.03 | 9.81 | 0.14 | 0.01 | ||
Na2O | MRC | 2.99~3.76 | 3.39 | 0.33 | 0.10 | 3.90 |
SBC | 3.44~3.86 | 3.60 | 0.14 | 0.04 | ||
CaO | MRC | 3.17~4.63 | 3.96 | 0.56 | 0.14 | 4.20 |
SBC | 3.19~4.85 | 4.05 | 0.54 | 0.13 | ||
Fe2O3 | MRC | 1.70~2.24 | 1.97 | 0.19 | 0.10 | 5.00 |
SBC | 1.82~2.04 | 1.92 | 0.10 | 0.05 | ||
K2O | MRC | 1.70~1.79 | 1.76 | 0.03 | 0.02 | 3.40 |
SBC | 1.56~1.74 | 1.68 | 0.06 | 0.03 | ||
MgO | MRC | 0.61~1.12 | 0.87 | 0.20 | 0.23 | 2.22 |
SBC | 0.54~0.98 | 0.77 | 0.14 | 0.18 | ||
TiO2 | MRC | 0.12~0.17 | 0.14 | 0.02 | 0.15 | 0.50 |
SBC | 0.10~0.12 | 0.11 | 0.01 | 0.08 | ||
MnO | MRC | 0.02~0.03 | 0.03 | 0.00 | 0.11 | 0.06 |
SBC | 0.02~0.03 | 0.03 | 0.00 | 0.13 | ||
P2O5 | MRC | - | 0.02 | 0.00 | 0.12 | 0.55 |
SBC | - | 0.02 | 0.00 | 0.06 |
[1] | Tsoar H. Bagnold R A 1941: The physics of blown sand and desert dunes. London: Methuen[J]. Progress in Physical Geography, 1994, 18(1): 91-96. |
[2] |
Yizhaq H, Katra I, Isenberg O, et al. Evolution of megaripples from a flat bed[J]. Aeolian Research, 2012, 6: 1-12.
doi: 10.1016/j.aeolia.2012.05.001 |
[3] |
李猛, 董治宝, 张正偲. 风成沙波纹数学模型综述[J]. 中国沙漠, 2013, 33(5): 1285-1292.
doi: 10.7522/j.issn.1000-694X.2013.00190 |
[ Li Meng, Dong Zhibao, Zhang Zhengcai. Overview on mathematical models of aeolian sand ripples[J]. Journal of Desert Research, 2013, 33(5): 1285-1292. ]
doi: 10.7522/j.issn.1000-694X.2013.00190 |
|
[4] | 梅凡民, 高自文, 蒋缠文. 风沙流中蠕移粒子群动量分布特征的风洞实验研究[J]. 西北大学学报(自然科学版), 2013, 43(3): 473-479. |
[ Mei Fanmin, Gao Ziwen, Jiang Chanwen. The stochastic distribution of rolling particles’ momentum during aeolian sand transports based on digital high-speed photography images taken in a blown sand wind tunnel[J]. Journal of Northwest University (Natural Science Edition), 2013, 43(3): 473-479. ] | |
[5] | Han Q J, Qu J J, Zu R P, et al. Granule ripples in the Kumtagh Desert, China: Morphological and sedimentary characteristics, and development processes[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(5): e2021JF006448, doi: 10.1029/2021JF006448. |
[6] | Gough T R. Megaripple Stripes[D]. Calgary: University of Calgary, 2019. |
[7] | Simons F S, Ericksen G E. Some desert features of northwest central Peru[J]. Boletin de la Sociedad Geológica del Perú, 1953, 26: 229-246. |
[8] | Newell N D, Boyd D W. Extraordinarily coarse eolian sand of the Ica Desert, Peru[J]. Journal of Sedimentary Research, 1955, 25: 226-228. |
[9] | Haney E M, Grolier M J. Geologic map of major Quaternary eolian features, northern and central coastal Peru[R]. Virginia: United States Geological Survey, 1991. |
[10] |
Durán O, Claudin P, Andreotti B. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws[J]. Aeolian Research, 2011, 3(3): 243-270.
doi: 10.1016/j.aeolia.2011.07.006 |
[11] |
Silvestro S, Vaz D, Di Achille G, et al. Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 760-774.
doi: 10.1002/jgre.v120.4 |
[12] |
罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1453.
doi: 10.7522/j.issn.1000-694X.2014.00110 |
[ Luo Wanyin, Dong Zhibao, Qian Guangqiang, et al. Geochemical compositions of surface sediment from gobi desert in northern China and its sedimentary significance[J]. Journal of Desert Research, 2014, 34(6): 1441-1453. ]
doi: 10.7522/j.issn.1000-694X.2014.00110 |
|
[13] |
潘凯佳, 张正偲, 董治宝, 等. 河西走廊新月形沙丘表层沉积物的理化性质[J]. 中国沙漠, 2019, 39(1): 44-51.
doi: 10.7522/j.issn.1000-694X.2018.00150 |
[ Pan Kaijia, Zhang Zhengcai, Dong Zhibao, et al. Physicochemical characteristics of surface sediments of crescent-shaped sand dunes in the Hexi Corridor, Gansu, China[J]. Journal of Desert Research, 2019, 39(1): 44-51. ]
doi: 10.7522/j.issn.1000-694X.2018.00150 |
|
[14] | Liang A M, Dong Z B, Su Z Z, et al. Provenance and transport process for interdune sands in the Kumtagh Sand Sea, northwest China[J]. Geomorphology, 2020, 367: 107310, doi: 10.1016/j.geomorph.2020.107310. |
[15] | Zhang Z C, Pan K J, Zhang C X, et al. Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China[J]. Catena, 2020, 190: 104483, doi: 10.1016/j.catena.2020.104483. |
[16] | 陈国祥. 毛乌素沙地风成沉积物沉积学特征[D]. 西安: 陕西师范大学, 2019. |
[ Chen Guoxiang. Sedimentological characteristics of aeolian sediments in Mu Us Sandy Land[D]. Xi’an: Shaanxi Normal University, 2019. ] | |
[17] |
张焱, 马鹏飞, 曾林, 等. 基于沉积物理化性质的雅鲁藏布江中游粉尘物源研究[J]. 中国沙漠, 2021, 41(3): 92-100.
doi: 10.7522/j.issn.1000-694X.2021.00024 |
[ Zhang Yan, Ma Pengfei, Zeng Lin, et al. Study on silt and clay provenance in the Yarlung Zangbo River middle reaches using sediment physicochemical characteristics[J]. Journal of Desert Research, 2021, 41(3): 92-100. ]
doi: 10.7522/j.issn.1000-694X.2021.00024 |
|
[18] | 邵菁清, 杨守业. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?[J]. 科学通报, 2012, 57(11): 933-942. |
[ Shao Jingqing, Yang Shouye. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River Basin?[J]. Chinese Science Bulletin, 2012, 57(11): 933-942. ] | |
[19] |
Ando S, Rittner M, Vermeesch P, et al. The provenance of Taklamakan Desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137.
doi: 10.1016/j.epsl.2015.12.036 |
[20] |
Hu F G, Yang X P. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016, 131: 179-192.
doi: 10.1016/j.quascirev.2015.10.039 |
[21] | 徐志伟, 鹿化煜, 赵存法, 等. 库姆塔格沙漠地表物质组成、来源和风化过程[J]. 地理学报, 2010, 65(1): 53-64. |
[ Xu Zhiwei, Lu Huayu, Zhao Cunfa, et al. Composition, origin and weathering process of surface sediment in Kumtagh Desert, northwest China[J]. Acta Geographica Sinica, 2010, 65(1): 53-64. ] | |
[22] | 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011. |
[ Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011. ] | |
[23] | 李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 西安: 陕西师范大学, 2011. |
[ Li Enjü. Comparative study on sediment characteristics of Badain Jaran Desert and Tengger Desert[D]. Xi’ an: Shaanxi Normal University, 2011. ] | |
[24] | 伍光和, 胡双熙, 张志良, 等. 柴达木盆地[M]. 兰州: 兰州大学出版社, 1990. |
[ Wu Guanghe, Hu Shuangxi, Zhang Zhiliang, et al. Qaidam Basin[M]. Lanzhou: Lanzhou University Press, 1990. ] | |
[25] |
梁爱民, 董治宝, 张正偲, 等. 沙漠倒置河床研究进展及其对火星类似物研究的启示[J]. 中国沙漠, 2022, 42(5): 14-24.
doi: 10.7522/j.issn.1000-694X.2022.00004 |
[ Liang Aimin, Dong Zhibao, Zhang Zhengcai, et al. Study on the desert inverted channels and its implication for the study of the analogue on Mars[J]. Journal of Desert Research, 2022, 42(5): 14-24. ]
doi: 10.7522/j.issn.1000-694X.2022.00004 |
|
[26] | 格尔木市地方志编纂委员会. 格尔木年鉴(2020)[M]. 西安: 陕西科学技术出版社, 2020. |
[ Golmud Local Chronicles Compilation Committee. Golmud Almanac (2020)[M]. Xi’ an: Shaanxi Science and Technology Press, 2020. ] | |
[27] |
陈宗颜, 董治宝, 汪青春, 等. 柴达木盆地风况及输沙势特征[J]. 中国沙漠, 2020, 40(1): 195-203.
doi: 10.7522/j.issn.1000-694X.2019.00090 |
[ Chen Zongyan, Dong Zhibao, Wang Qingchun, et al. Characteristics of wind regime and sand drift potential in Qaidam Basin of China[J]. Journal of Desert Research, 2020, 40(1): 195-203. ]
doi: 10.7522/j.issn.1000-694X.2019.00090 |
|
[28] |
Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D |
[29] |
Udden J A. Mechanical composition of clastic sediments[J]. Bulletin of the Geological Society of America, 1914, 25(1): 655-744.
doi: 10.1130/GSAB-25-655 |
[30] |
Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
doi: 10.1086/622910 |
[31] | Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106. |
[32] |
陈渭南. 塔克拉玛干沙漠84°E沿线沙物质的粒度特征[J]. 地理学报, 1993, 48(1): 33-46.
doi: 10.11821/xb199301005 |
[ Chen Weinan. Grain size parameters of aeolian sediments in the vicinity of the longitude 84°E, Taklamakan Desert[J]. Acta Geographica Sinica, 1993, 48(1): 33-46. ]
doi: 10.11821/xb199301005 |
|
[33] |
王晓枝, 董治宝, 南维鸽, 等. 拉萨河谷爬坡沙丘沉积物特征[J]. 中国沙漠, 2022, 42(4): 22-31.
doi: 10.7522/j.issn.1000-694X.2021.00174 |
[ Wang Xiaozhi, Dong Zhibao, Nan Weige, et al. Sediment characteristics of climbing dunes in Lhasa River Valley, China[J]. Journal of Desert Research, 2022, 42(4): 22-31. ]
doi: 10.7522/j.issn.1000-694X.2021.00174 |
|
[34] |
Qian G Q, Dong Z B, Zhang Z C, et al. Granule ripples in the Kumtagh Desert, China: Morphology, grain size and influencing factors[J]. Sedimentology, 2012, 59(6): 1888-1901.
doi: 10.1111/sed.2012.59.issue-6 |
[35] | Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Palo: Blackwell Scientific Publications, 1985. |
[36] | 李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51-63. |
[ Li Xulong, Zhang Xia, Lin Chunming, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63. ] | |
[37] | 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学: 地球科学, 2001(2): 136-145. |
[ Chen Jun, An Zhisheng, Liu Lianwen, et al. Changes in chemical composition of aeolian dust in the Loess Plateau and chemical weathering in inland Asia since the last 2.5 Ma[J]. Scientia Sinica (Terrae), 2001(2): 136-145. ] | |
[38] |
Tholen K, Pahtz T, Yizhaq H, et al. Megaripple mechanics: Bimodal transport ingrained in bimodal sands[J]. Nature Communications, 2022, 13(1): 162, doi: 10.1038/s41467-021-26985-3.
pmid: 35013166 |
[39] |
Gough T, Hugenholtz C, Barchyn T. Eolian megaripple stripes[J]. Geology, 2020, 48(11): 1067-1071.
doi: 10.1130/G47460.1 |
[40] |
Yizhaq H, Isenberg O, Wenkart R, et al. Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel[J]. Israel Journal of Earth Sciences, 2009, 57(3): 149-165.
doi: 10.1560/IJES.57.3-4.149 |
[41] |
Isenberg O, Yizhaq H, Tsoar H, et al. Megaripple flattening due to strong winds[J]. Geomorphology, 2011, 131(3-4): 69-84.
doi: 10.1016/j.geomorph.2011.04.028 |
[42] | 韩广, 龙鲜, 丁占良, 等. 科尔沁沙地大型沙波纹的初步研究[J]. 干旱区地理, 2023, 46(1): 56-64. |
[ Han Guang, Long Xian, Ding Zhanliang, et al. Preliminary study on the large-scale ripples in the Korqin Sandy Land[J]. Arid Land Geography, 2023, 46(1): 56-64. ] | |
[43] |
Yizhaq H, Katra I, Kok J F, et al. Transverse instability of megaripples[J]. Geology, 2012, 40(5): 459-462.
doi: 10.1130/G32995.1 |
[1] | YAN Min,ZUO Hejun,JIA Guangpu,XI Cheng. Vertical distribution characteristics of wind-sand flow and its grain size under different sand control measures [J]. Arid Land Geography, 2022, 45(5): 1513-1522. |
[2] | BAO Jing,YE Chengcheng,LI Bingshuai. Extraction, identification and paleoclimatic significance of clay minerals: A case of the Huaitoutala section in Qaidam Basin [J]. Arid Land Geography, 2022, 45(3): 814-825. |
[3] | WANG Pei,MA Qian,ZHU Yuanpu,ZENG Yi. Grain size characteristics and sedimentary environment of surface sediments from nebkhas and parabolic dunes in the Tukai Desert, Xinjiang [J]. Arid Land Geography, 2021, 44(6): 1644-1653. |
[4] | HE Zhenjie,MA Long,Jilili ABUDUWAILI,LIU Wen,Gulnura ISSANOVA,Galymzhan SAPAROV,HUANG Kun. Grain-size characteristics of lacustrine sediments in Balkhash Lake, Kazakhstan and its response to regional environmental changes [J]. Arid Land Geography, 2021, 44(5): 1317-1327. |
[5] | LIU Rong,YUE Dapeng,ZHAO Jingbo,SU Zhizhu,SHI Hao,WANG Xiaoning. Characterisitics of grain size end members and its environmental significance of aeolian sand/loess sedimentary sequence since L2 in Hengshan, Shaanxi Province [J]. Arid Land Geography, 2021, 44(5): 1328-1338. |
[6] | PAN Peichong,SHI Yang,ZHAO Zhifeng,WANG Jia,CAO Jiongwei,BAI Wenwen,XIE Hongwei,WEI Jiahua. Microphysical characteristics of precipitation under the intervention of acoustic over an inland arid region [J]. Arid Land Geography, 2021, 44(4): 906-913. |
[7] | LIU Xiya,WANG Haibing,ZUO Hejun,XIAO Jianhua. Fractal spatial variability and its genesis of sediments in Suhongtu Gobi [J]. Arid Land Geography, 2021, 44(1): 168-177. |
[8] | XU Rui-hong, WU Fa-si, WANG Wan-fu, HE Dong-peng, YANG Xiao-ju , ZHANG Guo-bin, KANG Shi-chang, LI Chao-liu. Chemical elemental characteristics of atmospheric inhalable particulates in Dunhuang Mogao Grottoes [J]. Arid Land Geography, 2020, 43(5): 1231-1241. |
[9] |
YU Ping-hui, MA Jin-long, LIAO Jian-bo, LI Zhi-yong, DI Jun.
Geochemistry and paleoenvironment significance of Lulehe Formation/Xiaganchaigou Formation located in the north area of Qaidam Basin [J]. Arid Land Geography, 2020, 43(3): 679-686. |
[10] | PAN Mei-hui, XUE Wen-xuan, WU Yong-qiu, HUANG Wen-min, MA Jian-jun, YANG An-na, CHEN Yu-lin. Grain size characteristics of the climbing dunes in Dinggye area of Tibet [J]. Arid Land Geography, 2019, 42(6): 1337-1345. |
[11] | WANG Yixuan, CHEN Tianyuan, WU Chan, LAI Zhongping, GUO Shoudong, Cong Lu. Formation and evolution of the Xitaijinair Salt Lake in Qaidam Basin revealed by chronology [J]. Arid Land Geography, 2019, 42(4): 876-884. |
[12] | DU Dingding, Muhammad Saleem Mughal, Dembele Blaise, ZHANG Chengjun. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since LastGlacial Maximum from Selin Co Lake sediments,central Qinghai-Tibetan Plateau [J]. Arid Land Geography, 2019, 42(3): 551-558. |
[13] | WANG Xi-mei,ZHANG Zhi,Ling Chao-hao,Wan Zhi-wei,JIA Yu-lian, WANG Ye-qiao. Grain size characteristic of regional sand-dust accumulation system in southwest of Poyang Lake [J]. 干旱区地理, 2019, 42(1): 29-37. |
[14] | CAO Zhi-hong, AN Cheng-bang, YIN Li-ying, DUAN Fu-tao, HAO Sheng-tun, ZHOU Ai-feng. Climate change derived from Anggeertu Lake in the Tengger Desert since 988 AD [J]. 干旱区地理, 2018, 41(6): 1251-1259. |
[15] | LI Bo, ZENG Biao, YANG Tai-bao. Different correlations between NDVI and climate factors in different watershed over Qaidam Basin from 1982-2015 [J]. 干旱区地理, 2018, 41(3): 449-458. |
|