Arid Land Geography ›› 2023, Vol. 46 ›› Issue (11): 1826-1835.doi: 10.12118/j.issn.1000-6060.2023.083
• Earth Surface Process • Previous Articles Next Articles
WANG Lijie(),XIAO Fengjun(
),DONG Zhibao,MA Huirong,CHEN Hao
Received:
2023-02-25
Revised:
2023-04-21
Online:
2023-11-25
Published:
2023-12-05
WANG Lijie, XIAO Fengjun, DONG Zhibao, MA Huirong, CHEN Hao. Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin[J].Arid Land Geography, 2023, 46(11): 1826-1835.
Tab. 1
Grain size distribution of surface sediments at MRS"
粒级 | 粒径/mm | 沙粒级配/% | ||||||
---|---|---|---|---|---|---|---|---|
MRC1 | SBC1 | MRC2 | SBC2 | MRC3 | SBC3 | MRC4 | ||
砾石 | >2 | 48.51 | 13.13 | 46.95 | 12.59 | 50.19 | 14.12 | 44.24 |
极粗沙 | 1~2 | 11.03 | 28.03 | 13.01 | 26.00 | 10.45 | 35.90 | 7.44 |
粗沙 | 0.5~1 | 1.02 | 9.20 | 1.19 | 8.22 | 1.26 | 12.41 | 0.83 |
中沙 | 0.25~0.5 | 2.22 | 4.51 | 2.19 | 5.33 | 2.23 | 3.76 | 1.89 |
细沙 | 0.125~0.25 | 12.00 | 20.05 | 11.97 | 20.47 | 11.62 | 14.80 | 14.16 |
极细沙 | 0.0625~0.125 | 16.57 | 19.65 | 16.04 | 19.70 | 15.91 | 14.21 | 20.42 |
粉沙黏土 | <0.0625 | 8.65 | 5.43 | 8.65 | 7.68 | 8.33 | 4.80 | 11.02 |
Tab. 2
Content of major elements in surface sediments at MRS"
元素 | MRS | 变化范围 | 平均值 | 标准差 | 变异系数 | 背景值[ |
---|---|---|---|---|---|---|
SiO2 | MRC | 61.22~64.09 | 62.56 | 1.09 | 0.02 | 66.00 |
SBC | 62.43~65.83 | 64.32 | 1.06 | 0.02 | ||
Al2O3 | MRC | 9.09~10.39 | 9.82 | 0.48 | 0.05 | 15.20 |
SBC | 9.59~10.03 | 9.81 | 0.14 | 0.01 | ||
Na2O | MRC | 2.99~3.76 | 3.39 | 0.33 | 0.10 | 3.90 |
SBC | 3.44~3.86 | 3.60 | 0.14 | 0.04 | ||
CaO | MRC | 3.17~4.63 | 3.96 | 0.56 | 0.14 | 4.20 |
SBC | 3.19~4.85 | 4.05 | 0.54 | 0.13 | ||
Fe2O3 | MRC | 1.70~2.24 | 1.97 | 0.19 | 0.10 | 5.00 |
SBC | 1.82~2.04 | 1.92 | 0.10 | 0.05 | ||
K2O | MRC | 1.70~1.79 | 1.76 | 0.03 | 0.02 | 3.40 |
SBC | 1.56~1.74 | 1.68 | 0.06 | 0.03 | ||
MgO | MRC | 0.61~1.12 | 0.87 | 0.20 | 0.23 | 2.22 |
SBC | 0.54~0.98 | 0.77 | 0.14 | 0.18 | ||
TiO2 | MRC | 0.12~0.17 | 0.14 | 0.02 | 0.15 | 0.50 |
SBC | 0.10~0.12 | 0.11 | 0.01 | 0.08 | ||
MnO | MRC | 0.02~0.03 | 0.03 | 0.00 | 0.11 | 0.06 |
SBC | 0.02~0.03 | 0.03 | 0.00 | 0.13 | ||
P2O5 | MRC | - | 0.02 | 0.00 | 0.12 | 0.55 |
SBC | - | 0.02 | 0.00 | 0.06 |
[1] | Tsoar H. Bagnold R A 1941: The physics of blown sand and desert dunes. London: Methuen[J]. Progress in Physical Geography, 1994, 18(1): 91-96. |
[2] |
Yizhaq H, Katra I, Isenberg O, et al. Evolution of megaripples from a flat bed[J]. Aeolian Research, 2012, 6: 1-12.
doi: 10.1016/j.aeolia.2012.05.001 |
[3] |
李猛, 董治宝, 张正偲. 风成沙波纹数学模型综述[J]. 中国沙漠, 2013, 33(5): 1285-1292.
doi: 10.7522/j.issn.1000-694X.2013.00190 |
[ Li Meng, Dong Zhibao, Zhang Zhengcai. Overview on mathematical models of aeolian sand ripples[J]. Journal of Desert Research, 2013, 33(5): 1285-1292. ]
doi: 10.7522/j.issn.1000-694X.2013.00190 |
|
[4] | 梅凡民, 高自文, 蒋缠文. 风沙流中蠕移粒子群动量分布特征的风洞实验研究[J]. 西北大学学报(自然科学版), 2013, 43(3): 473-479. |
[ Mei Fanmin, Gao Ziwen, Jiang Chanwen. The stochastic distribution of rolling particles’ momentum during aeolian sand transports based on digital high-speed photography images taken in a blown sand wind tunnel[J]. Journal of Northwest University (Natural Science Edition), 2013, 43(3): 473-479. ] | |
[5] | Han Q J, Qu J J, Zu R P, et al. Granule ripples in the Kumtagh Desert, China: Morphological and sedimentary characteristics, and development processes[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(5): e2021JF006448, doi: 10.1029/2021JF006448. |
[6] | Gough T R. Megaripple Stripes[D]. Calgary: University of Calgary, 2019. |
[7] | Simons F S, Ericksen G E. Some desert features of northwest central Peru[J]. Boletin de la Sociedad Geológica del Perú, 1953, 26: 229-246. |
[8] | Newell N D, Boyd D W. Extraordinarily coarse eolian sand of the Ica Desert, Peru[J]. Journal of Sedimentary Research, 1955, 25: 226-228. |
[9] | Haney E M, Grolier M J. Geologic map of major Quaternary eolian features, northern and central coastal Peru[R]. Virginia: United States Geological Survey, 1991. |
[10] |
Durán O, Claudin P, Andreotti B. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws[J]. Aeolian Research, 2011, 3(3): 243-270.
doi: 10.1016/j.aeolia.2011.07.006 |
[11] |
Silvestro S, Vaz D, Di Achille G, et al. Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 760-774.
doi: 10.1002/jgre.v120.4 |
[12] |
罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1453.
doi: 10.7522/j.issn.1000-694X.2014.00110 |
[ Luo Wanyin, Dong Zhibao, Qian Guangqiang, et al. Geochemical compositions of surface sediment from gobi desert in northern China and its sedimentary significance[J]. Journal of Desert Research, 2014, 34(6): 1441-1453. ]
doi: 10.7522/j.issn.1000-694X.2014.00110 |
|
[13] |
潘凯佳, 张正偲, 董治宝, 等. 河西走廊新月形沙丘表层沉积物的理化性质[J]. 中国沙漠, 2019, 39(1): 44-51.
doi: 10.7522/j.issn.1000-694X.2018.00150 |
[ Pan Kaijia, Zhang Zhengcai, Dong Zhibao, et al. Physicochemical characteristics of surface sediments of crescent-shaped sand dunes in the Hexi Corridor, Gansu, China[J]. Journal of Desert Research, 2019, 39(1): 44-51. ]
doi: 10.7522/j.issn.1000-694X.2018.00150 |
|
[14] | Liang A M, Dong Z B, Su Z Z, et al. Provenance and transport process for interdune sands in the Kumtagh Sand Sea, northwest China[J]. Geomorphology, 2020, 367: 107310, doi: 10.1016/j.geomorph.2020.107310. |
[15] | Zhang Z C, Pan K J, Zhang C X, et al. Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China[J]. Catena, 2020, 190: 104483, doi: 10.1016/j.catena.2020.104483. |
[16] | 陈国祥. 毛乌素沙地风成沉积物沉积学特征[D]. 西安: 陕西师范大学, 2019. |
[ Chen Guoxiang. Sedimentological characteristics of aeolian sediments in Mu Us Sandy Land[D]. Xi’an: Shaanxi Normal University, 2019. ] | |
[17] |
张焱, 马鹏飞, 曾林, 等. 基于沉积物理化性质的雅鲁藏布江中游粉尘物源研究[J]. 中国沙漠, 2021, 41(3): 92-100.
doi: 10.7522/j.issn.1000-694X.2021.00024 |
[ Zhang Yan, Ma Pengfei, Zeng Lin, et al. Study on silt and clay provenance in the Yarlung Zangbo River middle reaches using sediment physicochemical characteristics[J]. Journal of Desert Research, 2021, 41(3): 92-100. ]
doi: 10.7522/j.issn.1000-694X.2021.00024 |
|
[18] | 邵菁清, 杨守业. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?[J]. 科学通报, 2012, 57(11): 933-942. |
[ Shao Jingqing, Yang Shouye. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River Basin?[J]. Chinese Science Bulletin, 2012, 57(11): 933-942. ] | |
[19] |
Ando S, Rittner M, Vermeesch P, et al. The provenance of Taklamakan Desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137.
doi: 10.1016/j.epsl.2015.12.036 |
[20] |
Hu F G, Yang X P. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016, 131: 179-192.
doi: 10.1016/j.quascirev.2015.10.039 |
[21] | 徐志伟, 鹿化煜, 赵存法, 等. 库姆塔格沙漠地表物质组成、来源和风化过程[J]. 地理学报, 2010, 65(1): 53-64. |
[ Xu Zhiwei, Lu Huayu, Zhao Cunfa, et al. Composition, origin and weathering process of surface sediment in Kumtagh Desert, northwest China[J]. Acta Geographica Sinica, 2010, 65(1): 53-64. ] | |
[22] | 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011. |
[ Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011. ] | |
[23] | 李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 西安: 陕西师范大学, 2011. |
[ Li Enjü. Comparative study on sediment characteristics of Badain Jaran Desert and Tengger Desert[D]. Xi’ an: Shaanxi Normal University, 2011. ] | |
[24] | 伍光和, 胡双熙, 张志良, 等. 柴达木盆地[M]. 兰州: 兰州大学出版社, 1990. |
[ Wu Guanghe, Hu Shuangxi, Zhang Zhiliang, et al. Qaidam Basin[M]. Lanzhou: Lanzhou University Press, 1990. ] | |
[25] |
梁爱民, 董治宝, 张正偲, 等. 沙漠倒置河床研究进展及其对火星类似物研究的启示[J]. 中国沙漠, 2022, 42(5): 14-24.
doi: 10.7522/j.issn.1000-694X.2022.00004 |
[ Liang Aimin, Dong Zhibao, Zhang Zhengcai, et al. Study on the desert inverted channels and its implication for the study of the analogue on Mars[J]. Journal of Desert Research, 2022, 42(5): 14-24. ]
doi: 10.7522/j.issn.1000-694X.2022.00004 |
|
[26] | 格尔木市地方志编纂委员会. 格尔木年鉴(2020)[M]. 西安: 陕西科学技术出版社, 2020. |
[ Golmud Local Chronicles Compilation Committee. Golmud Almanac (2020)[M]. Xi’ an: Shaanxi Science and Technology Press, 2020. ] | |
[27] |
陈宗颜, 董治宝, 汪青春, 等. 柴达木盆地风况及输沙势特征[J]. 中国沙漠, 2020, 40(1): 195-203.
doi: 10.7522/j.issn.1000-694X.2019.00090 |
[ Chen Zongyan, Dong Zhibao, Wang Qingchun, et al. Characteristics of wind regime and sand drift potential in Qaidam Basin of China[J]. Journal of Desert Research, 2020, 40(1): 195-203. ]
doi: 10.7522/j.issn.1000-694X.2019.00090 |
|
[28] |
Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D |
[29] |
Udden J A. Mechanical composition of clastic sediments[J]. Bulletin of the Geological Society of America, 1914, 25(1): 655-744.
doi: 10.1130/GSAB-25-655 |
[30] |
Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
doi: 10.1086/622910 |
[31] | Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106. |
[32] |
陈渭南. 塔克拉玛干沙漠84°E沿线沙物质的粒度特征[J]. 地理学报, 1993, 48(1): 33-46.
doi: 10.11821/xb199301005 |
[ Chen Weinan. Grain size parameters of aeolian sediments in the vicinity of the longitude 84°E, Taklamakan Desert[J]. Acta Geographica Sinica, 1993, 48(1): 33-46. ]
doi: 10.11821/xb199301005 |
|
[33] |
王晓枝, 董治宝, 南维鸽, 等. 拉萨河谷爬坡沙丘沉积物特征[J]. 中国沙漠, 2022, 42(4): 22-31.
doi: 10.7522/j.issn.1000-694X.2021.00174 |
[ Wang Xiaozhi, Dong Zhibao, Nan Weige, et al. Sediment characteristics of climbing dunes in Lhasa River Valley, China[J]. Journal of Desert Research, 2022, 42(4): 22-31. ]
doi: 10.7522/j.issn.1000-694X.2021.00174 |
|
[34] |
Qian G Q, Dong Z B, Zhang Z C, et al. Granule ripples in the Kumtagh Desert, China: Morphology, grain size and influencing factors[J]. Sedimentology, 2012, 59(6): 1888-1901.
doi: 10.1111/sed.2012.59.issue-6 |
[35] | Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Palo: Blackwell Scientific Publications, 1985. |
[36] | 李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51-63. |
[ Li Xulong, Zhang Xia, Lin Chunming, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63. ] | |
[37] | 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学: 地球科学, 2001(2): 136-145. |
[ Chen Jun, An Zhisheng, Liu Lianwen, et al. Changes in chemical composition of aeolian dust in the Loess Plateau and chemical weathering in inland Asia since the last 2.5 Ma[J]. Scientia Sinica (Terrae), 2001(2): 136-145. ] | |
[38] |
Tholen K, Pahtz T, Yizhaq H, et al. Megaripple mechanics: Bimodal transport ingrained in bimodal sands[J]. Nature Communications, 2022, 13(1): 162, doi: 10.1038/s41467-021-26985-3.
pmid: 35013166 |
[39] |
Gough T, Hugenholtz C, Barchyn T. Eolian megaripple stripes[J]. Geology, 2020, 48(11): 1067-1071.
doi: 10.1130/G47460.1 |
[40] |
Yizhaq H, Isenberg O, Wenkart R, et al. Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel[J]. Israel Journal of Earth Sciences, 2009, 57(3): 149-165.
doi: 10.1560/IJES.57.3-4.149 |
[41] |
Isenberg O, Yizhaq H, Tsoar H, et al. Megaripple flattening due to strong winds[J]. Geomorphology, 2011, 131(3-4): 69-84.
doi: 10.1016/j.geomorph.2011.04.028 |
[42] | 韩广, 龙鲜, 丁占良, 等. 科尔沁沙地大型沙波纹的初步研究[J]. 干旱区地理, 2023, 46(1): 56-64. |
[ Han Guang, Long Xian, Ding Zhanliang, et al. Preliminary study on the large-scale ripples in the Korqin Sandy Land[J]. Arid Land Geography, 2023, 46(1): 56-64. ] | |
[43] |
Yizhaq H, Katra I, Kok J F, et al. Transverse instability of megaripples[J]. Geology, 2012, 40(5): 459-462.
doi: 10.1130/G32995.1 |
[1] | GONG Yifu, PAN Meihui, LI Na, HAO Zewen, CHEN Yougui, LI Chenlu. Grain size characteristics and environmental significance of different types of dune surface sediments in the Dinggye area, southern Xizang [J]. Arid Land Geography, 2024, 47(4): 588-598. |
[2] | YAN Min,ZUO Hejun,JIA Guangpu,XI Cheng. Vertical distribution characteristics of wind-sand flow and its grain size under different sand control measures [J]. Arid Land Geography, 2022, 45(5): 1513-1522. |
[3] | BAO Jing,YE Chengcheng,LI Bingshuai. Extraction, identification and paleoclimatic significance of clay minerals: A case of the Huaitoutala section in Qaidam Basin [J]. Arid Land Geography, 2022, 45(3): 814-825. |
[4] | WANG Pei,MA Qian,ZHU Yuanpu,ZENG Yi. Grain size characteristics and sedimentary environment of surface sediments from nebkhas and parabolic dunes in the Tukai Desert, Xinjiang [J]. Arid Land Geography, 2021, 44(6): 1644-1653. |
[5] | HE Zhenjie,MA Long,Jilili ABUDUWAILI,LIU Wen,Gulnura ISSANOVA,Galymzhan SAPAROV,HUANG Kun. Grain-size characteristics of lacustrine sediments in Balkhash Lake, Kazakhstan and its response to regional environmental changes [J]. Arid Land Geography, 2021, 44(5): 1317-1327. |
[6] | LIU Rong,YUE Dapeng,ZHAO Jingbo,SU Zhizhu,SHI Hao,WANG Xiaoning. Characterisitics of grain size end members and its environmental significance of aeolian sand/loess sedimentary sequence since L2 in Hengshan, Shaanxi Province [J]. Arid Land Geography, 2021, 44(5): 1328-1338. |
[7] | PAN Peichong,SHI Yang,ZHAO Zhifeng,WANG Jia,CAO Jiongwei,BAI Wenwen,XIE Hongwei,WEI Jiahua. Microphysical characteristics of precipitation under the intervention of acoustic over an inland arid region [J]. Arid Land Geography, 2021, 44(4): 906-913. |
[8] | LIU Xiya,WANG Haibing,ZUO Hejun,XIAO Jianhua. Fractal spatial variability and its genesis of sediments in Suhongtu Gobi [J]. Arid Land Geography, 2021, 44(1): 168-177. |
[9] | XU Rui-hong, WU Fa-si, WANG Wan-fu, HE Dong-peng, YANG Xiao-ju , ZHANG Guo-bin, KANG Shi-chang, LI Chao-liu. Chemical elemental characteristics of atmospheric inhalable particulates in Dunhuang Mogao Grottoes [J]. Arid Land Geography, 2020, 43(5): 1231-1241. |
[10] |
YU Ping-hui, MA Jin-long, LIAO Jian-bo, LI Zhi-yong, DI Jun.
Geochemistry and paleoenvironment significance of Lulehe Formation/Xiaganchaigou Formation located in the north area of Qaidam Basin [J]. Arid Land Geography, 2020, 43(3): 679-686. |
[11] | PAN Mei-hui, XUE Wen-xuan, WU Yong-qiu, HUANG Wen-min, MA Jian-jun, YANG An-na, CHEN Yu-lin. Grain size characteristics of the climbing dunes in Dinggye area of Tibet [J]. Arid Land Geography, 2019, 42(6): 1337-1345. |
[12] | WANG Yixuan, CHEN Tianyuan, WU Chan, LAI Zhongping, GUO Shoudong, Cong Lu. Formation and evolution of the Xitaijinair Salt Lake in Qaidam Basin revealed by chronology [J]. Arid Land Geography, 2019, 42(4): 876-884. |
[13] | DU Dingding, Muhammad Saleem Mughal, Dembele Blaise, ZHANG Chengjun. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since LastGlacial Maximum from Selin Co Lake sediments,central Qinghai-Tibetan Plateau [J]. Arid Land Geography, 2019, 42(3): 551-558. |
[14] | WANG Xi-mei,ZHANG Zhi,Ling Chao-hao,Wan Zhi-wei,JIA Yu-lian, WANG Ye-qiao. Grain size characteristic of regional sand-dust accumulation system in southwest of Poyang Lake [J]. 干旱区地理, 2019, 42(1): 29-37. |
[15] | CAO Zhi-hong, AN Cheng-bang, YIN Li-ying, DUAN Fu-tao, HAO Sheng-tun, ZHOU Ai-feng. Climate change derived from Anggeertu Lake in the Tengger Desert since 988 AD [J]. 干旱区地理, 2018, 41(6): 1251-1259. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|