Arid Land Geography ›› 2022, Vol. 45 ›› Issue (3): 684-694.doi: 10.12118/j.issn.1000-6060.2021.317
• Climate Change • Previous Articles Next Articles
SU Yue1,ZHANG Cunhou1,2(), Amuersana3,LI Ke4
Received:
2021-07-13
Revised:
2021-10-26
Online:
2022-05-25
Published:
2022-05-31
Contact:
Cunhou ZHANG
E-mail:zhangcunhou2004@163.com
SU Yue,ZHANG Cunhou, Amuersana,LI Ke. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018[J].Arid Land Geography, 2022, 45(3): 684-694.
Tab. 1
Linear trend analysis of maximum frozen soil depth changing rates in typical steppe of Inner Mongolia from 1981 to 2018 /cm·(10a)-1"
站点 | 克什克 腾旗 | 卓资县 | 东乌珠 穆沁旗 | 高力板镇 | 阿巴嘎旗 | 扎赉特旗 | 正镶白旗 | 集宁区 | 凉城县 | 阿鲁科尔 沁旗 | 商都县 |
---|---|---|---|---|---|---|---|---|---|---|---|
气候倾向率 | -3.0532** | -1.9700** | -1.6186** | -1.3624** | -1.0748** | -1.0060** | -0.9537** | -0.8673** | -0.7032** | -0.4415 | -0.3507 |
站点 | 巴林右旗 | 正蓝旗 | 化德县 | 太仆寺旗 | 察哈尔右 翼前旗 | 察哈尔右 翼后旗 | 察哈尔右 翼中旗 | 锡林 浩特市 | 扎鲁特旗 | 科尔沁左 翼中旗 | 西乌珠穆 沁旗 |
气候倾向率 | -0.3400 | -0.3173 | -0.2984 | -0.1627 | 0.2836 | 0.3624 | 0.4241 | 0.4678 | 0.8530** | 1.1050** | 1.3071** |
Tab. 2
Decadal variation of the maximum frozen soil depths in typical steppe of Inner Mongolia /cm"
气象站点 | 1981—1990年 | 1991—2000年 | 2001—2010年 | 2011—2018年 |
---|---|---|---|---|
高力板镇 | 168.9 | 154.5 | 138.6 | 131.9 |
克什克腾旗 | 264.1 | 232.0 | 206.1 | 176.9 |
卓资县 | 217.9 | 187.3 | 172.0 | 159.8 |
阿巴嘎旗 | 260.1 | 217.8 | 222.7 | 226.4 |
西乌珠穆沁旗 | 164.5 | 146.9 | 176.7 | 195.9 |
扎鲁特旗 | 124.4 | 107.8 | 126.3 | 150.1 |
科尔沁左翼中旗 | 127.1 | 105.3 | 142.9 | 151.8 |
锡林浩特市 | 234.3 | 230.9 | 242.1 | 249.0 |
太仆寺旗 | 232.3 | 209.9 | 220.1 | 226.0 |
察哈尔右翼前旗 | 133.3 | 118.0 | 124.1 | 144.0 |
察哈尔右翼中旗 | 198.1 | 180.6 | 195.8 | 207.4 |
察哈尔右翼后旗 | 209.9 | 183.9 | 193.7 | 220.9 |
集宁区 | 147.3 | 109.8 | 110.8 | 121.9 |
扎赉特旗 | 203.9 | 196.6 | 168.8 | 182.4 |
东乌珠穆沁旗 | 283.8 | 246.2 | 230.6 | 238.5 |
商都县 | 179.4 | 154.4 | 141.9 | 177.5 |
巴林右旗 | 173.2 | 152.8 | 147.2 | 167.6 |
正镶白旗 | 226.9 | 193.7 | 191.4 | 200.5 |
凉城县 | 149.9 | 143.8 | 118.1 | 135.9 |
化德县 | 186.5 | 160.0 | 179.5 | 176.6 |
阿鲁科尔沁旗 | 168.4 | 148.5 | 159.3 | 155.1 |
正蓝旗 | 233.7 | 211.5 | 237.4 | 213.8 |
Tab. 3
Pearson correlation coefficient between maximum frozen soil depths and meteorological factors in typical steppe of Inner Mongolia"
气象因子 | 年平均气温 | 气温冻结指数 | 地面冻结指数 | 气温年较差 | 年极端最高气温 | 年极端最低气温 | 平均相对湿度 |
---|---|---|---|---|---|---|---|
Pearson相关系数 | -0.698** | -0.680** | 0.569** | 0.386** | -0.112** | -0.577** | 0.371** |
气象因子 | 年降水量 | 最大积雪深度 | 平均40 cm地温 | 平均80 cm地温 | 日照时数 | 年平均风速 | |
Pearson相关系数 | -0.147** | 0.167** | -0.692** | -0.656** | 0.185** | 0.358** |
Tab. 4
Linear regression model between maximum frozen soil depths and meteorological factors in typical steppe of Inner Mongolia"
气候因子 | 未标准化系数 | 标准化系数 | t检验 | 显著性 | 共线性统计 | |||
---|---|---|---|---|---|---|---|---|
回归系数 | 标准误差 | 回归系数 | 容差 | 方差膨胀系数(VIF) | ||||
常量 | -32.340 | 17.706 | - | -1.826 | 0.068 | - | - | |
气温冻结指数 | -0.056 | 0.004 | -0.463 | -13.303 | 0.000 | 0.494 | 2.023 | |
气温年较差 | -0.144 | 0.389 | -0.012 | -0.371 | 0.711 | 0.578 | 1.729 | |
平均相对湿度 | 0.487 | 0.286 | 0.050 | 1.699 | 0.090 | 0.679 | 1.472 | |
年平均风速 | 8.445 | 1.638 | 0.134 | 5.154 | 0.000 | 0.879 | 1.138 | |
年极端最低气温 | -2.797 | 0.449 | -0.238 | -6.229 | 0.000 | 0.411 | 2.433 |
[1] | 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 10-12. |
[ Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Permafrost in China[M]. Beijing: Science Press, 2000: 10-12. ] | |
[2] | 蒋复初, 吴锡浩, 王书兵, 等. 中国大陆多年冻土线空间分布基本特征[J]. 地质力学学报, 2003, 9(4): 303-312. |
[ Jiang Fuchu, Wu Xihao, Wang Shubing, et al. Basic features of spatial distribution of the limits of permafrost in China[J]. Journal of Geomechanics, 2003, 9(4): 303-312. ] | |
[3] |
Anisimov O, Reneva S. Permafrost and changing climate: The Russian perspective[J]. Ambio, 2006, 35(4): 169-175.
doi: 10.1579/0044-7447(2006)35[169:PACCTR]2.0.CO;2 |
[4] | 张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层深度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511. |
[ Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. ] | |
[5] | 高思如, 曾文钊, 吴青柏, 等. 1990-2014年西藏季节冻土最大冻结深度的时空变化[J]. 冰川冻土, 2018, 40(2): 223-230. |
[ Gao Siru, Zeng Wenzhao, Wu Qingbai, et al. Temporal and spatial variations of the maximum frozen depth of seasonally frozen soil in Tibet from 1990 to 2014[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 223-230. ] | |
[6] | 张明礼, 温智, 薛珂, 等. 北麓河地区多年冻土地表能量收支分析[J]. 干旱区资源与环境, 2016, 30(9): 134-138. |
[ Zhang Mingli, Wen Zhi, Xue Ke, et al. Surface energy budget analysis in permafrost region of Beiluhe area[J]. Journal of Arid Land Resources and Environment, 2016, 30(9): 134-138. ] | |
[7] | 李元华, 安月改. 河北省冻土气候变化初探[J]. 干旱区资源与环境, 2005, 36(6): 445-449. |
[ Li Yuanhua, An Yuegai. Primary study on the change of frozen soil in the Hebei region[J]. Journal of Arid Land Resources and Environment, 2005, 36(6): 445-449. ] | |
[8] |
Camill P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming[J]. Climatic Change, 2005, 68: 135-152.
doi: 10.1007/s10584-005-4785-y |
[9] |
Anisimov O A, Nelson F E. Permafrost zonation and climate change in the northern Hemisphere: Results from transient general circulation models[J]. Climatic Change, 1997, 35(2): 241-258.
doi: 10.1023/A:1005315409698 |
[10] | 沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(I): 水文效应[J]. 冰川冻土, 2013, 35(3): 513-527. |
[ Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (I): Hydrological effect[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 513-527. ] | |
[11] | 秦大河, 丁一汇, 王绍武, 等. 中国西部环境演变及其影响研究[J]. 地学前缘, 2002, 9(2): 321-328. |
[Qin Dahe, Ding Yihui, Wang Shaowu, et al. A study of environment change and its impacts in western China[J]. Earth Science Frontiers, 2002, 9(2): 321-328. ] | |
[12] | 刘小宁, 李庆祥. 我国最大冻土深度变化及初步解释[J]. 应用气象学报, 2003, 14(3): 299-308. |
[ Liu Xiaoning, Li Qingxiang. Change of maximum frozen soil depth in China and its primary explanation[J]. Journal of Applied Meteorological Science, 2003, 14(3): 299-308. ] | |
[13] | 徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 102-103. |
[ Xu Xuezu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. Beijing: Science Press, 2010: 102-103. ] | |
[14] | Tokumoto I, Noborio K, Koga K. Coupled water and heat flow in a grass field with aggregated Andisol during soil-freezing periods[J]. Cold Regions Science & Technology, 2010, 62(2): 98-106. |
[15] |
Sinha T, Cherkauer K A. Time series analysis of soil freeze and thaw processes in Indiana[J]. Journal of Hydrometeorology, 2008, 9(5): 936-950. http://journals.ametsoc.org/doi/10.1175/2008JHM934.1
doi: 10.1175/2008JHM934.1 |
[16] |
Fu Q, Hou R, Li T, et al. The functions of soil water and heat transfer to the environment and associated response mechanisms under different snow cover conditions[J]. Geoderma, 2018, 325: 9-17. https://linkinghub.elsevier.com/retrieve/pii/S0016706117311916
doi: 10.1016/j.geoderma.2018.03.022 |
[17] |
Wlostowski A N, Gooseff M N, Adams B J. Soil moisture controls the thermal habitat of active layer soils in the McMurdo Dry Valleys, Antarctica[J]. Journal of Geophysical Research Biogeosciences, 2018, 123(1): G004018, doi: 10.1002/2017JG004018.
doi: 10.1002/2017JG004018 |
[18] | 高荣, 韦志刚, 董文杰, 等. 20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J]. 高原气象, 2003, 22(2): 191-196. |
[ Gao Rong, Wei Zhigang, Dong Wenjie, et al. Variation of the snow and frozen soil over Qinghai-Xizang Plateau in the late twentieth century and their relations to climate change[J]. Plateau Meteorology, 2003, 22(2): 191-196. ] | |
[19] | 姚作新, 李秦, 刘卫平, 等. 1960-2015年新疆塔什库尔干河谷季节性冻土对气候变化的响应[J]. 干旱区地理, 2017, 40(2): 257-265. |
[ Yao Zuoxin, Li Qin, Liu Weiping, et al. Response of seasonal frozen soil to climate change in Taxkorgan River Valley of Xinjiang during 1960-2015[J]. Arid Land Geography, 2017, 40(2): 257-265. ] | |
[20] | 王艳丽, 息涛, 张鹏, 等. 1961-2010年辽宁省季节性冻土变化特征分析[J]. 现代农业科技, 2013(21): 241-242. |
[ Wang Yanli, Xi Tao, Zhang Peng, et al. Analysis on the characteristics of seasonal frozen soil changes in Liaoning Province from 1961 to 2010[J]. Modern Agricultural Science and Technology, 2013(21): 241-242. ] | |
[21] | 杨晓玲, 汪宗成, 周华, 等. 河西走廊东部冻土初、终日的变化特征分析[J]. 干旱区资源与环境, 2017, 31(6): 117-122. |
[ Yang Xiaoling, Wang Zongcheng, Zhou Hua, et al. Variation characteristics of frozen soil first and last dates in Hexi Corridor eastern[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 117-122. ] | |
[22] | 杜军, 建军, 洪健昌, 等. 1961-2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012, 34(3): 513-521. |
[ Du Jun, Jian Jun, Hong Jianchang, et al. Response of seasonal frozen soil to climate change on Tibet region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 513-521. ] | |
[23] | 张存厚. 内蒙古草原地上净初级生产力对气候变化响应的模拟[D]. 呼和浩特: 内蒙古农业大学, 2013. |
[ Zhang Cunhou. Responses of ANPP to climate change in Inner Mongolia grassland a simulation based on century model[D]. Hohhot: Inner Mongolia Agricultural University, 2013. ] | |
[24] | 许坤鹏, 武世亮, 马孝义, 等. 基于主成分分析土壤水分扩散率单一参数模型的BP神经网络模型[J]. 干旱区地理, 2015, 38(1): 76-82. |
[ Xu Kunpeng, Wu Shiliang, Ma Xiaoyi, et al. BP artificial neural network model of one-parameter soil moisture diffusivity model based on principal components analysis[J]. Arid Land Geography, 2015, 38(1): 76-82. ] | |
[25] | 朱成刚, 艾克热木·阿布拉, 李卫红, 等. 塔里木河下游生态输水条件下胡杨林生态系统恢复研究[J]. 干旱区地理, 2021, 44(3): 629-636. |
[ Zhu Chenggang, Abula Aikeremu, Li Weihong, et al. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 629-636. ] | |
[26] | 蔡迪文, 张克存, 安志山, 等. 积沙影响下伏冻土的水热耦合模型研究[J]. 干旱区地理, 2017, 40(3): 523-532. |
[ Cai Diwen, Zhang Kecun, An Zhishan, et al. Coupled hydrothermal model of underlying permafrost influenced by sand accumulation[J]. Arid Land Geography, 2017, 40(3): 523-532. ] | |
[27] |
Zimov S A, Schuur E A G, Chapin F S. Permafrost and the Global Carbon Budget[J]. Science, 2006, 312: 1612-1613.
doi: 10.1126/science.1128908 |
[28] | 彭小清. 北半球季节冻土时空变化特征及其对气候变化的响应[D]. 兰州: 兰州大学, 2017. |
[ Peng Xiaoqing. Spatial-temporal variations of seasonally frozen ground and its response to climate change in the northern Hemisphere[D]. Lanzhou: Lanzhou University, 2017. ] | |
[29] | 毛德华, 王宗明, 宋开山, 等. 东北多年冻土区植被NDVI变化及其对气候变化和土地覆被变化的响应[J]. 中国环境科学, 2011, 31(2): 283-292. |
[ Mao Dehua, Wang Zongming, Song Kaishan, et al. The vegetation NDVI variation and its responses to climate change and LUCC from 1982 to 2006 year in northeast permafrost region[J]. China Environmental Science, 2011, 31(2): 283-292. ] | |
[30] | 胡洁, 张桐瑞, 孟德惠, 等. 内蒙古典型草原8种优势植物养分回收特征[J]. 中国草地学报, 2021, 43(3): 37-43. |
[ Hu Jie, Zhang Tongrui, Meng Dehui, et al. Plant nutrients resorption characteristics of eight dominant species in typical steppe of Inner Mongolia[J]. Chinese Journal of Grassland, 2021, 43(3): 37-43. ] | |
[31] | 廖莹, 范继辉, 李怡颖, 等. 1978-2017年西藏高原冻融指数时空变化特征[J]. 草业科学, 2021, 38(6): 1035-1046. |
[ Liao Ying, Fan Jihui, Li Yiying, et al. Spatiotemporal variations in freezing and thawing indices on the Tibetan Plateau during 1978-2017[J]. Pratacultural Science, 2021, 38(6): 1035-1046. ] | |
[32] | 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999: 37-63. |
[ Wei Fengying. Modern climate statistics diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 1999: 37-63. ] | |
[33] | 常晓丽, 兰爱玉, 帖利民, 等. 大兴安岭西坡多年冻土地温变化模拟[J]. 湖南科技大学学报(自然科学版), 2021, 36(2): 21-27. |
[ Chang Xiaoli, Lan Aiyu, Tie Limin, et al. Modelled thermal of permafrost on the western slope of the Da Xing’anling Mountains[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2021, 36(2): 21-27. ] | |
[34] | 刘小宁, 李庆祥. 我国最大冻土深度变化及初步解释[J]. 应用气象学报, 2003, 14(3): 299-308. |
[ Liu Xiaoning, Li Qingxiang. Change of maximum frozen soil depth in China and its primary explanation[J]. Journal of Applied Meteorological Science, 2003, 14(3): 299-308. ] | |
[35] | 任福民, 翟盘茂. 1951-1990年中国极端气温变化分析[J]. 大气科学, 1998, 22(2): 217-227. |
[ Ren Fumin, Zhai Panmao. Study on changes of China’s extreme temperatures during 1951-1990[J]. Scientia Atmospherica Sinica, 1998, 22(2): 217-227. ] | |
[36] | 金东艳, 高琼. 风速及刈割对草原土壤水分与生产力的影响[J]. 干旱区研究, 2015, 32(3): 48-53. |
[ Jin Dongyan, Gao Qiong. Impacts of wind and mowing on soil moisture and productivity in steppe[J]. Arid Zone Research, 2015, 32(3): 48-53. ] | |
[37] | 白云. 祁连山不同植被类型覆盖下冻土水热特征变化研究[D]. 兰州: 甘肃农业大学, 2020. |
[ Bai Yun. Study on variations of the hydro-thermal characteristics of frozen under different vegetation types in Qilian Mountain[D]. Lanzhou: Gansu Agricultural University, 2020. ] | |
[38] | 李林, 朱西德, 汪青春, 等. 青海高原冻土退化的若干事实揭示[J]. 冰川冻土, 2005, 27(3): 320-328. |
[ Li Lin, Zhu Xide, Wang Qingchun, et al. Mapping and analyses of permafrost change in the Qinghai Plateau using GIS[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 320-328. ] | |
[39] | 金会军, 王绍令, 吕兰芝, 等. 黄河源区冻土特征及退化趋势[J]. 冰川冻土, 2010, 32(1): 10-17. |
[ Jin Huijun, Wang Shaoling, Lü Lanzhi, et al. Features and degradation of frozen ground in the sources area of the Yellow River, China[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 10-17. ] | |
[40] | 高春香, 苏立娟, 宋进华, 等. 内蒙古东北部冻土分布与地温关系[J]. 内蒙古气象, 2004(1): 19-22. |
[ Gao Chunxiang, Su Lijuan, Song Jinhua, et al. The relationship between the distribution of frozen soil and ground temperature in northeastern Inner Mongolia[J]. Meteorology Journal of Inner Mongolia, 2004(1): 19-22. ] |
[1] | SUI Lu, YAN Zhiming, LI Kaifang, HE Peien, MA Yingjie, ZHANG Rucui. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change [J]. Arid Land Geography, 2024, 47(1): 104-116. |
[2] | TIAN Haowei, CHEN Fulong, LONG Aihua, LIU Jing, HAI Yang. Response and prediction of runoff to climate change in the headwaters of the Bortala River [J]. Arid Land Geography, 2023, 46(9): 1432-1442. |
[3] | AI Liya, WANG Yongfang, GUO Enliang, YIN Shan, GU Xiling. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE [J]. Arid Land Geography, 2023, 46(8): 1279-1290. |
[4] | GAO Xiaoyu, HAO Haichao, ZHANG Xueqi, CHEN Yaning. Responses of vegetation water use efficiency to meteorological factors in arid areas of northwest China: A case of Xinjiang [J]. Arid Land Geography, 2023, 46(7): 1111-1120. |
[5] | GU Chaolin, SU Hefang, GU Jiang, GAO Zhe, CHEN Lelin, GUO Li. On the new era of earth science [J]. Arid Land Geography, 2023, 46(7): 1176-1195. |
[6] | CHEN Shujun,XU Guochang,LYU Zhiping,MA Mingyue,LI Hanyu,ZHU Yuyan. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China [J]. Arid Land Geography, 2023, 46(5): 742-752. |
[7] | LI Na,WU Yongli,ZHAO Guixiang,QIAN Jinxia,LI Fen,ZHAO Haiying,HAN Pu. Interannual variations of extreme air temperature events and its response to regional warming in Shanxi Province in recent 60 years [J]. Arid Land Geography, 2023, 46(3): 337-348. |
[8] | REN Taotao,LI Shuangshuang,DUAN Keqin,HE Jinping. Spatiotemporal variation characteristics and influencing factors of heat wave and precipitation deficit flash drought in the Loess Plateau [J]. Arid Land Geography, 2023, 46(3): 360-370. |
[9] | JIN Zizhen, QIN Xiang, ZHAO Qiudong, LI Yanzhao, LIU Yushuo, CHEN Jizu, WANG Lihui, WANG Qiang. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains [J]. Arid Land Geography, 2023, 46(2): 178-190. |
[10] | CAO Xiaoyun,XIAO Jianshe,HAO Xiaohua,SHI Feifei,LIU Zhiyuan,LI Suyun. Variation of snow cover days and topographic differentiation in Sanjiangyuan area from 2001 to 2020 [J]. Arid Land Geography, 2022, 45(5): 1370-1380. |
[11] | LIANG Pengfei,XIN Huijuan,LI Zongxing,ZHANG Baijuan,GUI Juan,DUAN Ran,NAN Fusen,DINGZENG Yangping,YANG Shengmei. Runoff variation characteristics and influencing factors in the Heihe River Basin in the Qilian Mountains [J]. Arid Land Geography, 2022, 45(5): 1460-1471. |
[12] | HU Keke,HE Jiancun,ZHAO Jian,SU Litan,ZHANG Yin. Ecological base flow in Niya River Basin under climate change [J]. Arid Land Geography, 2022, 45(5): 1472-1480. |
[13] | HUANG Ying,YANG Jianling,LI Xin,CUI Yang,MA Yang,ZHANG Wen. Climate change characteristics and circulation anomaly causes of the first frost date in Ningxia based on ground temperature [J]. Arid Land Geography, 2022, 45(2): 359-369. |
[14] | WANG Yaqin,YANG Haimei,FAN Wenbo,XU Zhongyu,QIAO Changlu. Migration characteristics of wind erosion climate erosivity and its influencing factors in Xinjiang in recent 50 years [J]. Arid Land Geography, 2022, 45(2): 370-378. |
[15] | CHEN Yaning,LI Zhi,FANG Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia [J]. Arid Land Geography, 2022, 45(1): 1-8. |
|