收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (9): 1541-1554.doi: 10.12118/j.issn.1000-6060.2024.609 cstr: 32274.14.ALG2024609

• 植物生态 • 上一篇    下一篇

2000—2020年蒙古国植被净初级生产力时空演变特征及其影响因素

黄静1(), 李婷1(), 李朋飞1, Altansukh OCHIR2, 杨梅焕1, 王涛1, 李莎1   

  1. 1.西安科技大学测绘科学与技术学院,陕西 西安 710054
    2.蒙古国立大学工程与应用科学学院,乌兰巴托 210646
  • 收稿日期:2024-10-11 修回日期:2024-12-04 出版日期:2025-09-25 发布日期:2025-09-17
  • 通讯作者: 李婷(1989-),女,博士,讲师,主要从事生态恢复与生态系统服务研究. E-mail: liting19@xust.edu.cn
  • 作者简介:黄静(1996-),女,硕士研究生,主要从事植被变化及生态系统服务研究. E-mail: 22210226097@stu.xust.edu.cn
  • 基金资助:
    国家重点研发项目(2022YFE0119200);蒙古科学技术基金会(NSFC_2022/01);蒙古科学技术基金会(CHN2022/276)

Spatiotemporal evolution characteristics and its influencing factors of net primary productivity of vegetation in Mongolia form 2000 to 2020

HUANG Jing1(), LI Ting1(), LI Pengfei1, Altansukh OCHIR2, YANG Meihuan1, WANG Tao1, LI Sha1   

  1. 1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    2. College of Engineering and Applied Science, National University of Mongolia, Ulaanbaatar 210646, Mongolia
  • Received:2024-10-11 Revised:2024-12-04 Published:2025-09-25 Online:2025-09-17

摘要:

蒙古国是中国的北方邻国,其草地生态系统极易受到自然和人类活动因素的影响。采用一元线性回归模型分析2000—2020年蒙古国植被净初级生产力(NPP)时空演变规律;利用随机森林回归模型结合世界网格化牲畜数据集(GLW)模拟2020年蒙古国牲畜放牧密度,并结合年均地表温度、年均降水量、下行短波辐射、土壤水分、NO2排放量和人类足迹指数等指标,采用地理探测器定量探究蒙古国国家和省域尺度NPP变化的影响因素。 结果表明:(1) 2000—2020年,蒙古国NPP呈东增西减、北增南减的空间变化特征;整体上呈增加趋势,并以非显著增加为主,非显著增加区域占蒙古国国土面积的62.539%。(2) 单因子分析显示,气候因素是蒙古国NPP变化的主要原因,其中下行短波辐射和年均降水量的解释力最高,其q值分别为0.615、0.602;但人类足迹指数、NO2排放量与气候因子交互作用大于单因子分析结果。(3) 省域尺度分析表明,气候和地形等自然因素仍是蒙古国东部和西部地区NPP变化的主要驱动力,而蒙古国中部地区和杭爱地区NPP变化更易受到放牧密度、NO2排放量等人类活动与自然因素的交互作用,这些区域是今后开展草地退化风险防控的重点关注区域。研究结果可为蒙古国不同地区草地生态系统的有效管理和可持续发展策略的制定提供科学依据。

关键词: NPP, 时空变化, 影响因素, 放牧密度, 蒙古国

Abstract:

Mongolia, China’s northern neighbor, has a grassland ecosystem that is highly susceptible to natural factors and human activities. A univariate linear regression model was used to analyze the spatiotemporal variations in net primary productivity (NPP) of vegetation in Mongolia from 2000 to 2020. A random forest regression model, combined with the Gridded Livestock of the World (GLW) dataset, was used to simulate livestock grazing density in Mongolia for 2020. The geographic detector method was then utilized to examine the factors influencing NPP changes at both national and provincial scales, incorporating indicators such as average annualland surface temperature, average annual precipitation, downward shortwave radiation, soil moisture, NO2 emissions, and the human footprint index. The results indicated that: (1) From 2000 to 2020, the NPP in Mongolia exhibited spatial characteristics of increasing in the east and north and decreasing in the west and south. There is an overall increasing trend, dominated by nonsignificant increases, with nonsignificantly increasing areas accounting for 62.539% of Mongolia’s land area. (2) Single-factor analysis revealed that climatic factors were the primary drivers of NPP changes in Mongolia, with downward shortwave radiation (q=0.615) and average annual precipitation (q=0.602) showing the highest contribution. However, the interactions between the human footprint index or NO2 emissions and climatic factors exceeded the explanatory power of individual factors. (3) At the provincial-scale, climate and topography remained the main drivers of NPP changes in the eastern and western regions of Mongolia. In contrast, NPP changes in the Central and Khangai regions of Mongolia were more influenced by the interaction between human activities (grazing density and NO2 emissions) and natural factors, making these areas critical for the prevention and control of future grassland degradation risk. These findings provide scientific insights for the effective management of grassland ecosystems in various regions of Mongolia and for the formulation of sustainable development strategies.

Key words: NPP, spatial and temporal changes, influencing factors, grazing density, Mongolia