收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (1): 11-19.doi: 10.12118/j.issn.1000-6060.2024.057 cstr: 32274.14.ALG2024057

• 水文与水资源 • 上一篇    下一篇

内蒙古冰雹特征及基于机器学习的冰雹识别方法研究

辛悦1(), 苏立娟1(), 郑旭程1, 李慧1, 衣娜娜1, 靳雨晨2   

  1. 1.内蒙古自治区人工影响天气中心,内蒙古 呼和浩特 010051
    2.内蒙古自治区气象科学研究所,内蒙古 呼和浩特 010051
  • 收稿日期:2024-01-25 修回日期:2024-04-25 出版日期:2025-01-25 发布日期:2025-01-21
  • 通讯作者: 苏立娟(1976-),女,硕士,正研级高工,主要从事大气物理学与人工影响天气研究. E-mail: 13847146506@163.com
  • 作者简介:辛悦(1995-),女,硕士,工程师,主要从事大气物理学与人工影响天气研究. E-mail: xinqzh163@163.com
  • 基金资助:
    国家自然科学基金重点项目(42030604);内蒙古自然科学基金面上项目(2024MS0424);中国气象局创新发展专项项目(CXFZ 2022J033);内蒙古自治区气象局科技创新项目(nmqxkjcx202470)

Hail characteristics and hail recognition method based on machine learning in Inner Mongolia

XIN Yue1(), SU Lijuan1(), ZHENG Xucheng1, LI Hui1, YI Nana1, JIN Yuchen2   

  1. 1. Inner Mongolia Weather Modification Center, Hohhot 010051, Inner Mongolia, China
    2. Inner Mongolia Meteorological Science Institute, Hohhot 010051, Inner Mongolia, China
  • Received:2024-01-25 Revised:2024-04-25 Published:2025-01-25 Online:2025-01-21

摘要: 利用1959—2021年内蒙古人工观测冰雹记录,分析冰雹分布的时空特征,并基于机器学习算法构建了冰雹识别方法。结果表明:(1) 时间分布上,冰雹事件出现的站数和站日数均呈现下降趋势;空间分布上,冰雹多集中在阴山山脉和大兴安岭一带,冰雹多发区沿山脉伸展分布。(2) 冰雹发生具有明显的季节变化和日变化特征,每年5—9月是冰雹频发月份,占全年雹日的91.79%,雹日中12:00—19:00是冰雹的多发时段。(3) 利用随机森林、LightGBM、K近邻和决策树4种机器学习算法,通过数据预处理、预报因子选择、模型训练、模型调优等步骤,对内蒙古冰雹天气过程进行建模与评估。评估结果表明,采用机器学习方法可以有效地识别冰雹天气过程,各模型的TS评分均达到0.83以上,命中率达到92%以上,随机森林算法在测试集上识别效果最优。研究结果可为内蒙古冰雹预报预警和人工防雹工作提供参考。

关键词: 冰雹站日数, 时空特征, 机器学习, 冰雹识别

Abstract:

Based on the manual observation of hail records in Inner Mongolia, China, from 1959 to 2021, the spatial and temporal characteristics of hail distribution are analyzed, and a hail recognition method is constructed based on machine learning algorithms. The results are as follows: (1) Regarding temporal distribution, the number of hail days and affected stations in Inner Mongolia shows a decreasing trend. In terms of spatial distribution, hail events are predominantly concentrated in the Yinshan Mountains and the Greater Hinggan Mountains, with hail-prone areas extending along these mountain ranges. (2) Hail exhibits distinct seasonal and diurnal characteristics. The peak hail months in Inner Mongolia are from May to September, accounting for 91.79% of the annual hail days. The most frequent period for hail occurrences is between 12:00 BST and 19:00 BST. (3) Four machine learning algorithms (random forest, LightGBM, K-proximity, and decision tree) are used to model and evaluate hail events in Inner Mongolia through data preprocessing, predictor selection, model training, and tuning. Verification results indicate that machine learning methods effectively identify hail events, with the threat score of each model exceeding 0.83 and hit rates surpassing 92%. Among these, the random forest algorithm demonstrates the best recognition performance on the test set. These findings provide useful references for hail forecasting and artificial hail prevention in Inner Mongolia.

Key words: the number of hail station days, temporal and spatial characteristics, machine learning, hail identification