[1] |
刘文静, 范永胜, 董彦琪, 等. 我国棉花生产现状分析及建议[J]. 中国种业, 2022(1): 21-25.
|
|
[ Liu Wenjing, Fan Yongsheng, Dong Yan Qi, et al. Analysis and suggestions on the current situation of cotton production in China[J]. China Seed Industry, 2022(1): 21-25. ]
|
[2] |
马春玥, 买买提·沙吾提, 依尔夏提·阿不来提, 等. 新疆棉花种植业地理集聚特征及影响因素研究[J]. 作物学报, 2019, 45(12): 1859-1867.
doi: 10.3724/SP.J.1006.2019.94041
|
|
[ Ma Chunyue, Sawut Mamat, Ablet Ershat, et al. Characteristics and influencing factors of geographical agglomeration of cotton plantation in Xinjiang[J]. Acta Agronomica Sinica, 2019, 45(12): 1859-1867. ]
doi: 10.3724/SP.J.1006.2019.94041
|
[3] |
孙俊, 丛孙丽, 毛罕平, 等. 基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型[J]. 农业工程学报, 2017, 33(5): 178-184.
|
|
[ Sun Jun, Cong Sunli, Mao Hanping, et al. CARS-ABC-SVR model for predicting leaf moisture of leaf-used lettuce based on hyperspectral[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 178-184. ]
|
[4] |
Junttila S, Hölttä T, Saarinen N, et al. Close-range hyperspectral spectroscopy reveals leaf water content dynamics[J]. Remote Sensing of Environment, 2022, 277: 113071, doi: 10.20944/preprints 202108.0497.v1.
|
[5] |
Li L, Ustin S L, Riano D. Retrieval of fresh leaf fuel moisture content using genetic algorithm partial least squares (GA-PLS) modeling[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 216-220.
doi: 10.1109/LGRS.2006.888847
|
[6] |
Sun J, Zhou X, Hu Y G, et al. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2019, 160: 153-159.
doi: 10.1016/j.compag.2019.03.004
|
[7] |
Li X L, Wei Z X, Peng F F, et al. Estimating the distribution of chlorophyll content in CYVCV-infected lemon leaf using hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2022, 198: 107036, doi: 10.1016/j.compag.2022.107036.
|
[8] |
杨宝华, 陈建林, 陈林海, 等. 基于敏感波段的小麦冠层氮含量估测模型[J]. 农业工程学报, 2015, 31(22): 176-182.
|
|
[ Yang Baohua, Chen Jianlin, Chen Linhai, et al. Estimation model of wheat canopy nitrogen content based on sensitive bands[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 176-182. ]
|
[9] |
张文旭, 佟炫梦, 周天航, 等. 基于高光谱成像的棉花叶片氮素含量遥感估测[J]. 沈阳农业大学学报, 2021, 52(5): 586-596.
|
|
[ Zhang Wenxu, Tong Xuanmeng, Zhou Tianhang, et al. Remote sensing estimation of cotton leaf nitrogen content based on hyperspectral imaging[J]. Journal of Shenyang Agricultural University, 2021, 52(5): 586-596. ]
|
[10] |
易翔, 张立福, 吕新, 等. 基于无人机高光谱融合连续投影算法估算棉花地上部生物量[J]. 棉花学报, 2021, 33(3): 224-234.
|
|
[ Yi Xiang, Zhang Lifu, Lü Xin, et al. Estimation of cotton above-ground biomass based on unmanned aerial vehicle hyperspectral and successive projections algorithm[J]. Cotton Science, 2021, 33(3): 224-234. ]
|
[11] |
陈鹏. 基于无人机多源遥感的马铃薯叶绿素含量反演机理及模型构建[D]. 焦作: 河南理工大学, 2019.
|
|
[ Chen Peng. Retrieval mechanism and model construction of chlorophyll content in potato based on multi-source remote sensing of unmanned aerial vehicle[D]. Jiaozuo: Henan Polytechnic University, 2019. ]
|
[12] |
于雷, 洪永胜, 周勇, 等. 高光谱估算土壤有机质含量的波长变量筛选方法[J]. 农业工程学报, 2016, 32(13): 95-102.
|
|
[ Yu Lei, Hong Yongsheng, Zhou Yong, et al. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 95-102. ]
|
[13] |
王佳文, 彭杰, 纪文君, 等. 基于电磁感应数据的南疆棉田土壤pH反演研究[J]. 干旱区研究, 2022, 39(4): 1293-1302.
|
|
[ Wang Jiawen, Peng Jie, Ji Wenjun, et al. Soil pH inversion based on electromagnetic induction data in cotton field of southern Xinjiang[J]. Arid Zone Research, 2022, 39(4): 1293-1302. ]
|
[14] |
Li L L, Sun J, Tseng M L, et al. Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation[J]. Expert Systems with Applications, 2019, 127: 58-67.
doi: 10.1016/j.eswa.2019.03.002
|
[15] |
Zhou J, Zhu S Li, Qiu Y G, et al. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm[J]. Acta Geotechnica, 2022, 17: 1343-1366.
doi: 10.1007/s11440-022-01450-7
|
[16] |
Zhao F, Li W D. A combined model based on feature selection and WOA for PM2.5 concentration forecasting[J]. Atmosphere, 2019, 10(4): 223, doi: 10.3390/atmos10040223.
|
[17] |
苏毅, 王克如, 李少昆, 等. 棉花植株水分含量的高光谱监测模型研究[J]. 棉花学报, 2010, 22(6): 554-560.
|
|
[ Su Yi, Wang Keru, Li Shaokun, et al. Monitoring models of the plant water content based on cotton canopy hyperspectral reflectance[J]. Cotton Science, 2010, 22(6): 554-560. ]
|
[18] |
王强, 易秋香, 包安明, 等. 棉花冠层水分含量估算的高光谱指数研究[J]. 光谱学与光谱分析, 2013, 33(2): 507-512.
pmid: 23697143
|
|
[ Wang Qiang, Yi Qiuxiang, Bao Anming, et al. Discussion on hyperspectral index for the estimation of cotton canopy water content[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 507-512. ]
pmid: 23697143
|
[19] |
赵巧珍, 丁建丽, 韩礼敬, 等. MODIS和Landsat时空融合影像在土壤盐渍化监测中的适用性研究——以渭干河—库车河三角洲绿洲为例[J]. 干旱区地理, 2022, 45(4): 1155-1164.
|
|
[ Zhao Qiaozhen, Ding Jianli, Han Lijing, et al. Exploring the application of MODIS and Landsat spatiotemporal fusion images in soil salinization: A case of Ugan River-Kuqa River Delta Oasis[J]. Arid Land Geography, 2022, 45(4): 1155-1164. ]
|
[20] |
玉苏甫·买买提, 吐尔逊·艾山, 买合皮热提·吾拉木. 新疆渭-库绿洲棉花种植面积遥感监测研究[J]. 农业现代化研究, 2014, 35(2): 240-243.
|
|
[ Mamat Yusup, Hasan Tursun, Gulam Magpirat. Remote sensing of cotton plantation areas monitoring in delta oasis of Ugan-Kucha River, Xinjiang[J]. Research of Agricultural Modernization, 2014, 35(2): 240-243. ]
|
[21] |
刘帆. 分数阶微分算法在医学超声弹性图像去噪中的应用研究[D]. 昆明: 昆明理工大学, 2018.
|
|
[ Liu Fan. Application of fractional differential algorithm in medical ultrasonic elastic image denoising[D]. Kunming: Kunming University of Science and Technology, 2018. ]
|
[22] |
李长春, 施锦锦, 马春艳, 等. 基于小波变换和分数阶微分的冬小麦叶绿素含量估算[J]. 农业机械学报, 2021, 52(8): 172-182.
|
|
[ Li Changchun, Shi Jinjin, Ma Chunyan, et al. Estimation of chlorophyll content in winter wheat based on wavelet transform and fractional differential[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 172-182. ]
|
[23] |
Li H D, Liang Y Z, Xu Q S, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
doi: 10.1016/j.aca.2009.06.046
pmid: 19616692
|
[24] |
Zhang J K, Rivard B, Rogge D M. The successive projection algorithm (SPA), an algorithm with a spatial constraint for the automatic search of endmembers in hyperspectral data[J]. Sensors, 2008, 8(2): 1321-1342.
pmid: 27879768
|
[25] |
程介虹, 陈争光, 衣淑娟. 最小相关系数的多元校正波长选择算法[J]. 光谱学与光谱分析, 2022, 42(3): 719-725.
|
|
[ Cheng Jiehong, Chen Zhengguang, Yi Shujuan. Wavelength selection algorithm based on minimum correlation coefficient for multivariate calibration[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 719-725. ]
|
[26] |
宋相中. 近红外光谱定量分析中三种新型波长选择方法研究[D]. 北京: 中国农业大学, 2017.
|
|
[ Song Xiangzhong. Research of three new wavelength selection methods in near infrared spectroscopy quantitative analysis area[D]. Beijing: China Agricultural University, 2017. ]
|
[27] |
Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
doi: 10.1016/j.advengsoft.2016.01.008
|
[28] |
李畸勇, 张伟斌, 赵新哲, 等. 改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J]. 电工技术学报, 2021, 36(9): 1771-1781.
|
|
[ Li Qiyong, Zhang Weibin, Zhao Xinzhe, et al. Global maximum power point tracking for PV array based on support vector regression optimized by improved whale algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1771-1781. ]
|
[29] |
吾木提·艾山江, 买买提·沙吾提, 马春玥. 基于分数阶微分和连续投影算法-反向传播神经网络的小麦叶片含水量高光谱估算[J]. 激光与光电子学进展, 2019, 56(15): 251-259.
|
|
[ Hasan Umut, Sawut Mamat, Ma Chunyue. Hyperspectral estimation of wheat leaf water content using fractional differentials and successive projection algorithm-back propagation neural network[J]. Laser & Optoelectronics Progress, 2019, 56(15): 251-259. ]
|
[30] |
Zhang M J, Zhang S Z, Iqbal J. Key wavelengths selection from near infrared spectra using Monte Carlo sampling-recursive partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 128: 17-24.
doi: 10.1016/j.chemolab.2013.07.009
|
[31] |
Han Z Z, Deng L M. Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data[J]. Computers and Electronics in Agriculture, 2018, 153: 248-255.
doi: 10.1016/j.compag.2018.08.018
|
[32] |
Jia M, Li W, Wang K K, et al. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat[J]. Computers and Electronics in Agriculture, 2019, 165: 104942, doi: 10.1016/j.compag.2019.104942.
|
[33] |
Mohammadi B, Mehdizadeh S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm[J]. Agricultural Water Management, 2020, 237: 106145, doi: 10.1016/j.agwat.2020.106145.
|